首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   14篇
林业   13篇
农学   8篇
基础科学   4篇
  19篇
综合类   19篇
农作物   14篇
水产渔业   28篇
畜牧兽医   33篇
园艺   4篇
植物保护   36篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   8篇
  2019年   9篇
  2018年   5篇
  2017年   5篇
  2016年   11篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   5篇
  2011年   10篇
  2010年   10篇
  2009年   6篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1959年   1篇
  1937年   1篇
  1936年   1篇
  1935年   1篇
  1934年   2篇
排序方式: 共有178条查询结果,搜索用时 78 毫秒
1.
Below‐ground niche complementarity in legume–cereal intercrops may improve resource use efficiency and root adaptability to environmental constraints. However, the effect of water limitation on legume rooting and nodulation patterns in intercropping is poorly understood. To advance our knowledge of mechanisms involved in water‐limitation response, faba bean (Vicia faba L.) and wheat (Triticum aestivum L.) were grown as mono‐ and intercrops in soil‐filled plexiglass rhizoboxes under water sufficiency (80% of water‐holding capacity) and water limitation (30% of water‐holding capacity). We examined whether intercropping facilitates below‐ground niche complementarity under water limitation via interspecific root stratification coupled with modified nodulation patterns. While no significant treatment effects were measured in intercropped wheat growth parameters, water limitation induced a decrease in shoot and root biomass of monocropped wheat. Likewise, shoot biomass and height, and root length of monocropped faba bean significantly decreased under water limitation. Conversely, water limitation stimulated root biomass of intercropped faba bean in the lower soil layer (15–30 cm soil depth). Similarly, total nodule number of faba bean roots as well as nodule number in the lower soil layer increased under intercropping regardless of water availability. Under water limitation, intercropping also led to a significant increased nodule biomass (48%) in the lower soil layer as compared to monocropping. The enhanced nodulation in the lower soil layer and the associated increase in root and shoot growth provides evidence for a shift in niche occupancy when intercropped with wheat, which improves water‐limited faba bean performance.  相似文献   
2.
Chitosan has been widely accepted as a wall material for preparing microcapsules of various purposes in human medicine. The possibility of using chitosan as a wall material for microencapsulating nutrients and drugs for aquaculture purposes, specifically to Macrobrachium rosenbergii larvae was evaluated in this study. Two types of chitosan-coated microcapsules were prepared using either acetone (MEC-A) or NaOH (MEC-N) as the cross-linking agents. They were compared with a microbound diet relative to total leaching of nutrients and free amino acids (FAA). Among the microcapsules, MEC-N showed the lowest level of total leaching of nutrients (23.3%) during 5 h of immersion in seawater and released 65% FAA after 60 min. During laboratory trials, 75% larvae had accepted the MEC-N capsule. The results of the study suggest that chitosan can be used as a wall material for preparing microcapsules to deliver drugs and nutrients to M. rosenbergii larvae.  相似文献   
3.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
4.
Landscape Ecology - This study provides a unified, holistic framework for predicting the dynamics of shrub-grass conversion throughout Mediterranean-climate shrublands. This work focuses...  相似文献   
5.
6.
7.
Emamectin is a macrocyclic lactone insecticide with low toxicity to non-target organisms and the environment, and is considered an important component in pest-management programmes for controlling field crop pests. It is a powerful compound for controlling the cotton bollworm Helicoverpa armigera (Hübner). A spray concentration of 25 mg AI litre-1 in a cotton field resulted in over 90% suppression of H armigera larvae up to day 28 after treatment, while similar mortality of the Egyptian cotton leafworm Spodoptera littoralis Boisduval, under the same conditions, was maintained for 3 days only. Emamectin is a potent compound for controlling the western flower thrips Frankliniella occidentalis (Pergande) under both laboratory and field conditions and its activity on adults was over 10-fold greater than that of abamectin. Spray concentrations of 10 and 50 mg AI litre-1 in Ageratum houstonianum Mill flowers resulted in total suppression of adults up to day 11 and of larvae up to day 20 after treatment. Under standard laboratory conditions, emamectin exhibits a considerable activity on the whitefly Bemisia tabaci (Gennadius) and the leafminer Liriomyza huidobrensis (Blanchard). Further studies are required to evaluate its potential activity on the latter pests under field conditions.  相似文献   
8.
Cavity spot is a major disease of carrots, causing cavities on the surface of the root. Available commercial varieties show a range of susceptibility but no significant resistance. Seed progeny from 46 tissue culture-derived carrot ( Daucus carota ) somaclones were screened for viability, then 19 selected somaclone families were sown under glasshouse conditions, along with commercial cultivars (Bertan, Nandor, Bolero and Vita Longa) as controls. Mature roots were exposed to Pythium violae in a cavity spot bioassay to determine their response as measured by disease incidence and severity. Some somaclones formed fewer lesions than the least susceptible control cultivar, Vita Longa. Seven somaclonal families that showed a range of susceptibility were sown under field conditions and the assessment was repeated. Although there was little relationship between glasshouse and field-trial results, under field conditions one of the somaclones had a mean incidence of disease, as estimated by transformed data, of 1·9 compared with 37·9 for the most susceptible somaclone and 3·5 for Bolero, the most resistant commercial cultivar. The results indicated that significant genetic variation in susceptibility to cavity spot disease was present in the somaclones.  相似文献   
9.
10.
The conversion of forests to agroecosystems or agroforests comes with many changes in biological and chemical processes. Agroforestry, a tree based agroecosystem, has shown promise with respect to enhanced system nutrient accumulation after land conversion as compared to sole cropping systems. Previous research on tropical agroforestry systems has revealed increases in soil organic matter and total organic nitrogen in the short term. However, research is lacking on long-term system level sustainability of nutrient cycles and storage, specifically in traditional multi-strata agroforestry systems, as data on both the scope and duration of nutrient instability are inconclusive and often conflicting. This study, conducted in Ghana, West Africa, focused on carbon and nitrogen dynamics in a twenty-five year chronosequence of cacao (Theobroma cacao Linn.) plantations. Three treatments were selected as on-farm research sites: 2, 15 and 25-year-old plantations. Soil carbon (C, to a depth of 15 cm) varied between treatments (2 years: 22.6 Mg C ha−1; 15 years: 17.6 Mg C ha−1; 25 years: 18.2 Mg C ha−1) with a significant difference between the 2- and 15- and the 2- and 25-year-old treatments (p < 0.05). Total soil nitrogen in the top 15 cm varied between 1.09 and 1.25 Mg N ha−1 but no significant differences were noted between treatments. Soil nitrification rates and litter fall increased significantly with treatment age. However, photosynthetically active radiation (PAR) and soil temperature showed a significant decrease with age. No difference was found between decay rates of litter at each treatment age. By 25 years, system carbon sequestration rates were 3 Mg C ha−1 y−1, although results suggest that even by 15 years, system-level attributes were progressing towards those of a natural system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号