首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   17篇
  国内免费   1篇
林业   20篇
农学   20篇
基础科学   5篇
  156篇
综合类   38篇
农作物   12篇
水产渔业   15篇
畜牧兽医   116篇
园艺   3篇
植物保护   29篇
  2021年   6篇
  2019年   9篇
  2018年   3篇
  2016年   6篇
  2015年   9篇
  2014年   9篇
  2013年   45篇
  2012年   11篇
  2011年   20篇
  2010年   10篇
  2009年   12篇
  2008年   15篇
  2007年   15篇
  2006年   18篇
  2005年   16篇
  2004年   12篇
  2003年   8篇
  2002年   14篇
  2001年   6篇
  2000年   6篇
  1999年   10篇
  1998年   5篇
  1997年   13篇
  1996年   9篇
  1995年   7篇
  1994年   10篇
  1993年   7篇
  1992年   3篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1972年   2篇
  1969年   2篇
  1968年   2篇
  1966年   3篇
  1961年   2篇
  1959年   2篇
  1928年   2篇
排序方式: 共有414条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
On acid sandy soils of Niger (West Africa) fertilizer N recovery by pearl millet (Pennisetum glaucum L.) is often more than 100 per cent in years with normal or above average rainfall. Biological nitrogen fixation (BNF) by N2-fixing bacteria may contribute to the N supply in pearl millet cropping systems. For a long-term field experiment comprising treatments with and without mineral fertilizer (F) and with and without crop residue application (CR) a N balance sheet was calculated over a period of six years (1983-1988). After six years of successive millet cropping total N uptake (36-77 kg N ha?1 yr?1) was distinctly higher than the amount of fertilizer N applied (30 kg N ha?1 yr?1). The atmospheric input of NH4-N and NO3-N in the rainwater was about 2 kg N ha?1 yr?1, 70 % in the form of NH4-N. Gaseous NH3 losses from urea (broadcast, incorporated) were estimated from other experiments to amount to 36 % of the fertilizer N applied. Nitrogen losses by leaching (15 to > 25 kg N ha?1 yr?1) were dependent on the treatment and on the quantity and distribution of single rainfall events (>50 mm). Decline in total soil N content (0-60 cm) ranged from 15 to 48 kg N ha?1 yr?1. The long-term N balance (1983-1988) indicated an annual net gain between 6 (+CR-F) and 13 (+CR+F) kg N ha?1 yr?1. For the control (-CR-F) the long-term N balance was negative (10 kg N ha?1 yr?1). In the treatment with crop residues only, the N balance was mainly determined by leaching losses, whereas in treatments with mineral fertilizer application the N balance depended primarily on N removal by the millet crop. The annual net gain in the N balance increased from 7 kg ha?1 with mineral fertilizer to 13 kg ha?1 in the combination mineral fertilizer plus crop residues. In both the rhizosphere and the bulk soil (0-15 cm), between 9 and 45% of the total bacterial population were N2-fixing (diazotrophic) bacteria. The increased N gain upon crop residue application was positively correlated with an increase in the number of diazotrophic and total bacteria. The data on bacterial numbers suggest that the gain of N in the longterm N balance is most likely due to an N input by biological nitrogen fixation. In addition, evidence exists from related studies that the proliferation of diazotrophs and total bacteria in the rhizosphere due to crop residue application stimulated root growth of pearl millet, and thus improved the phosphorus (P) acquisition in the P deficient soil.  相似文献   
5.
The effect of Zn deficiency in wheat (Triticum aestivum L. cv. Ares) on the release of Zn mobilizing root exudates was studied in nutrient solution. Compared to Zn sufficient plants, Zn deficient plants had higher root and lower shoot dry weights. After visual Zn deficiency symptoms in leaves appeared (15–17 day old plants) there was a severalfold increase in the release of root exudates efficient at mobilizing Zn from either a selective cation exchanger (Zn-chelite) or a calcareous soil. The release of these root exudates by Zn deficient plants followed a distinct diurnal rhythm with a maximum between 2 and 8 h after the onset of light. Re-supply of Zn to deficient plants depressed the release of Zn mobilizing root exudates within 12 h to about 50%-, and after 72 h to the level of the control plants (Zn sufficient plants). The root exudates of Zn deficient wheat plants were equally effective at mobilizing Fe from freshly precipitated FeIII hydroxide as Zn from Zn-chelite. Furthermore, root exudates from Fe deficient wheat plants mobilized Zn from Zn-chelite, as well as Fe from FeIII hydroxide. Purification of the root exudates and identification by HPLC indicated that under Zn as well as under Fe deficiency, wheat roots of the cv. Ares released the phytosiderophore 2′-deoxymugineic acid. Additional experiments with barley (Hordeum vulgare L. cv. Europa) showed that in this species another phytosiderophore (epi-3-hydroxymugineic acid) was released under both Zn and Fe deficiencies. These results demonstrate that the enhanced release of phytosiderophores by roots of grasses is not a response mechanism specific for Fe deficiency, but also occurs under Zn deficiency. The ecological relevance of enhanced release of phytosiderophore also under Zn deficiency is discussed.  相似文献   
6.
Evolution of supergene families associated with insecticide resistance   总被引:5,自引:0,他引:5  
The emergence of insecticide resistance in the mosquito poses a serious threat to the efficacy of many malaria control programs. We have searched the Anopheles gambiae genome for members of the three major enzyme families- the carboxylesterases, glutathione transferases, and cytochrome P450s-that are primarily responsible for metabolic resistance to insecticides. A comparative genomic analysis with Drosophila melanogaster reveals that a considerable expansion of these supergene families has occurred in the mosquito. Low gene orthology and little chromosomal synteny paradoxically contrast the easily identified orthologous groups of genes presumably seeded by common ancestors. In A. gambiae, the independent expansion of paralogous genes is mainly a consequence of the formation of clusters among locally duplicated genes. These expansions may reflect the functional diversification of supergene families consistent with major differences in the life history and ecology of these organisms. These data provide a basis for identifying the resistance-associated enzymes within these families. This will enable the resistance status of mosquitoes, flies, and possibly other holometabolous insects to be monitored. The analyses also provide the means for identifying previously unknown molecules involved in fundamental biological processes such as development.  相似文献   
7.
Agricultural soil landscapes of hummocky ground moraines are characterized by 3D spatial patterns of soil types that result from profile modifications due to the combined effect of water and tillage erosion. We hypothesize that crops reflect such soil landscape patterns by increased or reduced plant and root growth. Root development may depend on the thickness and vertical sequence of soil horizons as well as on the structural development state of these horizons at different landscape positions. The hypotheses were tested using field data of the root density (RD) and the root lengths (RL) of winter wheat using the minirhizotron technique. We compared data from plots at the CarboZALF‐D site (NE Germany) that are representing a non‐eroded reference soil profile (Albic Luvisol) at a plateau position, a strongly eroded profile at steep slope (Calcaric Regosol), and a depositional profile at the footslope (Anocolluvic Regosol). At each of these plots, three Plexiglas access tubes were installed down to approx. 1.5 m soil depth. Root measurements were carried out during the growing season of winter wheat (September 2014–August 2015) on six dates. The root length density (RLD) and the root biomass density were derived from RD values assuming a mean specific root length of 100 m g?1. Values of RD and RLD were highest for the Anocolluvic Regosol and lowest for the Calcaric Regosol. The maximum root penetration depth was lower in the Anocolluvic Regosol because of a relatively high and fluctuating water table at this landscape position. Results revealed positive relations between below‐ground (root) and above‐ground crop parameters (i.e., leaf area index, plant height, biomass, and yield) for the three soil types. Observed root densities and root lengths in soils at the three landscape positions corroborated the hypothesis that the root system was reflecting erosion‐induced soil profile modifications. Soil landscape position dependent root growth should be considered when attempting to quantify landscape scale water and element balances as well as agricultural productivity.  相似文献   
8.
It is possible to rapidly detect the presence of high concentrations of sediment associated hydrocarbons using a sediment profile camera and simultaneously evaluate the general sedimentological and biological character of a contaminated area. In sediments that were heavily contaminated with hydrocarbons from spills and chronic long-term additions the presence of hydrocarbons was seen about 50% of the time in the sediment profile images as unique features, ‘H spots’. The presence of these features was related to the concentration of hydrocarbons in the sediment. In highly contaminated muddy sediments ‘H spots’ were found in images collected at stations that had from 270 to 610 ppt total hydrocarbons. Sedimentological and biological information obtained from the sediment profile images confirmed the impacted nature of Elizabeth River sediments. Sediment profile imaging provide a means of obtaining an overall evaluation of the quality of a habitat and impacts on that habitat from pollution related environmental disturbances. While qualitative, an advantage of sediment profile image data is that they can be evaluated in less than a day and used to quickly locate inclusions of hydrocarbons in the sediments for further quantitative chemical or biological sampling, or mapping of heavily contaminated areas.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号