首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
林业   2篇
基础科学   1篇
  3篇
园艺   1篇
  2013年   3篇
  2007年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Field-grown olive trees (Olea europaea L. cv. Leccino) were used over two growing seasons to determine the effect of deficit irrigation regimes on virgin olive oil (VOO) quality. Drip irrigation was managed to maintain a predawn leaf water potential (PLWP): (a) higher than -1.1 MPa (full irrigation: FI); (b) between -1.0 and -3.3 MPa (deficit irrigation: DI); (c) higher than -4.2 MPa (severe deficit irrigation: SI). The fruit yield and oil yield of DI trees were over 90% of those of FI treatments in both years, respectively, whereas yields of SI trees ranged from 61 to 76%. The irrigation regime had minor effects on the free acidity, peroxide value, and fatty acid composition of VOO. The concentrations of phenols and o-diphenols in VOO were negatively correlated with PLWP. The concentrations of the dialdehydic form of decarboxymethyl elenolic acid linked to (3,4-dihydroxyphenyl)ethanol (3,4-DHPEA-EDA), the isomer of the oleuropein aglycon (3,4-DHPEA-EA), and the dialdehydic form of decarboxymethyl elenolic acid linked to (p-hydroxyphenyl)ethanol (p-HPEA-EDA) were lower in FI than in SI treatments. The concentrations of lignans (+)-1-acetoxipinoresinol and (+)-1-pinoresinol were unaffected by the irrigation regime. The tree water status had a marked effect on the concentration of volatile compounds, such as the C(6)-saturated and unsaturated aldehydes, alcohols, and esters.  相似文献   
2.
Volterra  L.  Musmeci  L.  Gucci  P.M.B.  Coccia  A.M.  Esposito  S. 《Water, air, and soil pollution》1996,91(1-2):109-124
Effective minesoil recovery requires spoils to be converted to soils of similar quality to those previously existing on that site. The developing minesoil should thus acquire three critical capacities, namely the capacities to a) support plant production, b) degrade organic matter and c) remove contaminants from water. The degree of development of these capacities provides a useful measure of soil quality and thus of the success of a given soil recovery technique. At the Meirama lignite mine in Galicia (northwest Spain), the possibility of using cattle slurry instead of the inorganic fertilizers currently used is being investigated. The results of a number of experiments suggest that cattle slurry is more effective (in terms of the above three critical capacities) than inorganic fertilizer. In slurry-fertilized spoils, rapid increases are observed in vegetation cover, in the relative abundance of self-seeded native plant species, in soil microbial activity and in those physical and chemical properties which affect infiltration and the capacity to remove contaminants from percolating water.  相似文献   
3.
A four-year study was conducted on young Olea europaea L. trees to investigate the effect of deficit irrigation starting from the onset of fruit production. Subsurface drip irrigation was used to supply 100% (FI), 46–52% (DI), or 2–6% (SI) of tree water needs. Tree growth was reduced by deficit irrigation, whereas, return bloom was not. Per tree fruit yield of DI trees was 68% that of FI, but fruit yield efficiency based on tree size was similar between treatments. Fruit set and the number of fruits of FI trees were similar to those of DI trees and significantly higher than in SI trees. No significant differences in fruit fresh weight were found between FI and DI. The oil yield and oil yield efficiency of the DI treatment were 82 and 110% that of FI trees, respectively. A level of about 50% deficit proved sustainable to irrigate trees for oil production.  相似文献   
4.
Net photosynthetic rates (A) of leaves on 11-year-old, field-grown apple trees (Malus domestica Borkh. cv. Golden Delicious) were measured after removal of fruits at four different stages of development. Defruiting decreased A by 21, 42, 27 and 7% when fruits were growing at 311, 293, 229 and 113 mg(DW) day(-1), respectively. Photosynthesis was inhibited more in the afternoon than in the morning, but it was not affected during the first 8 h after fruit removal. Inhibition of A was positively correlated with crop sink strength, but it was not correlated with fruit relative growth rate or crop load. Defruiting decreased A at saturating irradiances (PPFD > 1000 micro mol m(-2) s(-1)), but did not modify the apparent quantum yield of single leaves. These results suggest that the overall effect of defruiting on carbon fixation is negligible in dense canopies, but it may be significant in sparse canopies and in single shoots.  相似文献   
5.
An experiment was conducted over 12 months using field-grown olive trees (Olea europaea) to assess the combined effect of soil water availability and fruit number on seasonal changes in leaf nitrogen (N) concentration. Three irrigation regimes were established and three trees per irrigation treatment were thinned to reduce their yield to about half that of unthinned trees. The N concentration of fully-expanded leaves from either the current-year growth or one-year old part of fruiting shoots was determined every two months. Nitrogen concentration was higher in current-year leaves than in one-year old ones at most sampling dates. Maximum values of leaf N were measured in spring, minimum values in August. Leaf N concentrations were positively correlated with leaf water potential during fruit development. This relationship was weak at the onset of rapid oil accumulation in August and became more evident at harvest. There was no correlation between leaf N and crop level.  相似文献   
6.
SUMMARY

A field experiment was conducted over two growing seasons to determine the combined effect of crop load and irrigation on yield components of olive trees (Olea europaea L. ‘Leccino’) planted at 6 m 3.8 m in a sandy-clay soil. Different crop loads were established by manual thinning of fruits. Drip irrigation was managed to maintain pre-dawn leaf water-potentials (PLWP) within the following ranges: (i) higher than –1.1 MPa (FI; fully irrigated); (ii) between –1.0 and –3.3 MPa (DI; deficit irrigated); or (iii) below –1.2 MPa, but not lower than –4.2 MPa (SI; severe deficit irrigated). The irrigation period lasted from 6 – 16 weeks after full bloom (AFB) in 2003, and from 5 – 19 weeks AFB in 2004. In 2003, full bloom was on 26 May; in 2004, it was on 3 June. Neither irrigation regime nor crop load affected flowering or flower quality the following Spring. The combined fruit yields [on a fresh weight (FW) basis] over both years in SI and DI trees were 49.0% and 81.6% of FI trees, respectively. The oil yields of SI and DI trees were 52.5% and 81.2% of FI trees, respectively. Fruit FWs in FI trees were greater than those of DI or SI trees at 8 weeks AFB. At harvest, FI trees bore the largest fruits, and SI trees the smallest fruits. The FWs of individual fruits at harvest in the FI and DI treatments decreased as crop load increased, but no such relationship was apparent for SI trees. The oil content of the mesocarp increased as PLWP increased from approx. –3.5 MPa to –1.5 MPa. The oil content of FI trees at harvest decreased from 53.1% to 45.7% dry weight as fresh fruit yield increased from 5 – 25 kg dm–2 trunk cross-sectional area. However, crop load did not have any effect on the oil content of the mesocarp in DI trees. Fruit maturation was delayed by irrigation. Maturation index also decreased (indicating delayed maturation) as the crop load on FI or DI trees increased, but did not vary with crop level in SI trees.  相似文献   
7.
One-year-old rooted cuttings of olive (Olea europaea L. cvs. Frantoio and Leccino) were grown either hydroponically or in soil in a greenhouse. Plants were exposed to NaCl treatments (0, 100, and 200 mM) for 35 days, followed by 30 to 34 days of relief from salt stress to determine whether previously demonstrated genotypic differences in tolerance to salinity were related to water relations parameters. Exposure to high salt concentrations resulted in reductions in predawn water potential (Psi(w)), osmotic potential at full turgor (Psi(piFT)), osmotic potential at turgor loss point (Psi(piTLP)), and relative water content (RWC) in both cultivars, regardless of the growth substrate. Leaf Psi(w) and RWC returned to values similar to those of controls by the end of the relief period. The effect of salinity on Psi(pi) appeared earlier in Leccino than in Frantoio. Values for Psi(piFT) were -2.50, -2.87, and -3.16 MPa for the 0, 100, and 200 mM salt-treated Frantoio plants, respectively, and -2.23, -2.87, and -3.37 MPa for the corresponding Leccino plants. Recovery of Psi(pi) was complete for plants in the 100 mM salt treatment, but not for plants in the 200 mM salt treatment, which maintained an increased pressure potential (Psi(pi)) compared to control plants. Net solute accumulation was higher in Leccino, the salt-sensitive cultivar, than in Frantoio. In controls of both cultivars, cations contributed 39.9 to 42.0% of the total Psi(piFT), mannitol and glucose contributed 27.1 to 30.8%, and other soluble carbohydrates contributed 3.1 to 3.6%. The osmotic contribution of Na(+) increased from 0.1-2.1% for non-treated plants to 8.6-15.5% and 15.6-20.0% for the 100 mM and 200 mM salt-treated plants, respectively. The mannitol contribution to Psi(piFT) reached a maximum of 9.1% at the end of the salinization period. We conclude that differences between the two cultivars in leaf water relations reflect differences in the exclusion capacities for Na(+) and Cl(-) ions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号