首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  国内免费   1篇
基础科学   1篇
  25篇
综合类   4篇
农作物   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   4篇
  2008年   9篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   3篇
  1998年   2篇
  1985年   1篇
排序方式: 共有31条查询结果,搜索用时 828 毫秒
1.
The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang,Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods inclu-ding reduced tillage (RT), no-till (NT), 2 crops/year (2C), subsoiling(SS), and conventional tillage (CT)were compared to determine the effects of tillage methods on soil water conservation, water availability, andwheat yields in a search for better farming systems in the areas. The NT and SS showed good effects on waterconservation. The soil water storage increased 12 - 33 mm with NT and 9 - 24 mm with SS at the end of sum-mer fallow periods. The soil evaporation with NT and SS decreased 7 - 8 mm and 34 - 36 mm during the fallowperiods of 1999 and 2001, respectively. Evapotranspiration (ET) with NT and SS increased about 47 mm dur-ing wheat growth periods of 2000 to 2001. Treatment RT and 2C had low water storage and high water lossesduring the fallow periods. The winter wheat yields with conservation tillage practices were improved in the 2ndyear, increased by 3, 5 and 8 % with RT, NT and SS, respectively, compared with CT. The highest wheatyields were obtained with subsoiling, and the maximum economic benefits from no-till. All conservation tillagepractices provided great benefits to saving energy and labors, reducing operation inputs, and increasing eco-nomic returns. No-till and subsoiling have shown promise in increasing water storage, reducing water loss, en-hancing water availability, and saving energy, as well as increasing wheat yield.  相似文献   
2.
Field experiments were carried out to study the effects of different soil management practices on the water balance, precipitation use efficiency (PUE), and crop yield (i.e. winter wheat and peanut) on a loess soil near Luoyang (east edge of the Chinese Loess Plateau, Henan Province, China). Field plots were set up in 1999 including following soil management practices: subsoiling with mulch (SS), no-till with mulch (NT), reduced tillage (RT), two crops per year (i.e. winter wheat and peanut, TC), and a conventional tillage control (CT). The field plots were equipped to monitor all components of the soil–water balance except evapotranspiration, which was computed by solving the water balance equation. The results showed that although soil management had smaller influence on the magnitude of the water balance components than did precipitation variations, small influences of the applied soil management practices on water conservation during the fallow period can greatly affect winter wheat yield. SS increased consistently precipitation storage efficiency (PSE) and PUE over the 5 years compared to CT except during the wettest year. NT also had a noticeable effect on postharvest water storage during the fallow period; however, the influence on yield of NT depended on the amount of precipitation. TC lowered the winter wheat yield mainly due to the unfavorable soil moisture conditions after growing peanut in summer; however, the harvested peanut gained an extra profit for the local farmer. No matter which kind of soil management practices was adapted, PSE never exceeded 41.6%, which was primarily attributed to high evapotranspiration. From data of five consecutive agricultural years between 2000 and 2005, it could be concluded that SS resulted in the highest PSE, PUE and crop yield. TC also showed promising results considering the economic value of the second crop. NT performed slightly less as SS. CT gave intermediate results, whereas RT was the worst alternative.  相似文献   
3.
Landuse changes may dramatically enhance erosion risk. Besides deforestation, also arable landuse may have an important influence on soil loss. We investigated the erosion risk in a 151 km2 subwatershed of the Cuyaguateje watershed (Cuba) using the RUSLE model. It was found that the valleys used for agriculture have the highest erosion risk, with actual erosion surpassing soil loss tolerance. Over the period 1985–2000, about 14 km2 of forest has been converted into arable land. As a result, the area with a very high erosion risk increased with 12%. On arable land it was found that the crop management factor C of a “tobacco/maize” rotation was 0.478, compared to 0.245 for a rotation of various crops (sweet potato, beans, maize, cassava and fallow). When maize in the “tobacco/maize” rotation was intercropped with a leguminous crop (hyacinth bean) the C factor decreased to a value of 0.369. Also contouring may halve soil loss on moderate slopes (< 10%) when high ridges are applied, which is in Cuba generally the case for maize, cassava and sweet potato.  相似文献   
4.
Field experiments were conducted at the Alameda del Obispo Experiment Station of the Andalusian Autonomous Government, Córdoba, Spain, to compare the field-saturated hydraulic conductivity (Kfs) measured by four different techniques: constant-head well permeameter (CP), falling-head lined borehole permeameter (FP), twin-rings (TR) and disk infiltrometer (DI). For each technique, measurements under and outside the olive-canopy were compared in order to detect differences in Kfs. All techniques gave higher Kfs values under the canopy, but significantly higher only for FP and TR. Outside the canopy Kfs values obtained with CP and TR were significantly higher than those obtained with the FP and the DI methods, but the FP and the DI as well as the CP and the TR Kfs values were statistically the same. Under the canopy, Kfs values obtained with the TR method were significantly higher than those obtained with the other three techniques. Estimates of Kfs, however, are most comparable for DI and FP.  相似文献   
5.
Field rainfall simulations were conducted in 2002 and 2005 to study the effects of different soil management practices on the total phosphorous (TP) and Olsen-P losses by soil erosion and redistribution along a 15 m long slope in Luoyang, Henan province, China. Field plots were set up in 2001 and included the following soil management practices: subsoiling with mulch (SSM), no-till with mulch (NTM), reduced tillage (RT), and a conventional tillage control (CT). The results showed that there were no significant differences in TP and Olsen-P content in the sediment load between different plots after 6 years uniform tillage practices. The enrichment of TP and Olsen-P at the lower slope showed a clear redistribution along the slope. Effects of tillage practices on the temporal pattern of the enrichment ratio (ER) of TP and Olsen-P was not uniform. ERTP values were initially high and diminished after a short period of time and leveled to the end of the rainfall test in CT and RT plots, but remained ≥ 1. The ER of Olsen-P at the end of rainfall simulation showed a significant difference when compared to the initial stage, 0.78 to 1.60, respectively. However, the temporal loss rate of TP and Olsen-P showed a similar pattern because it was more depending on the sediment loss rate than on the concentration in the sediment. SSM resulted in 96% less TP and Olsen-P erosion loss compared to CT in 2002. Also, SSM showed the highest reduction in TP and Olsen-P loss after 4 years consistent practice. RT reduced TP and Olsen-P loss by 30%, although the runoff reduction was not significant. NTM was the best alternative with respect to TP and Olsen-P conservation, when considering its lower operational costs.  相似文献   
6.
Windbreaks present a porous obstacle to the approaching airflow, forcing air to flow through the windbreak at a reduced speed and accelerate over the top. In this research, windbreaks were considered as border structures to mitigate spray drift. Air flows, with an interspace between it, particles are filtered from the flow by deposition on the windbreak. Hence there is a reduction in deposition in the downwind sheltered area (the ‘quiet zone’) behind the windbreak. Peak deposition in the sheltered area can occur at minimum wind speeds. The deposition profiles of spray drift behind various border structures were measured. In the first part, drift tests were performed in a wind tunnel. Artificial screens with various heights and open areas were tested. A row of plastic Christmas trees and natural canopies were also tested. Subsequently, drift experiments were performed under field conditions in a grassland with the artificial screens and a row of Fagus sylvatica trees. The artificial screens reduced spray drift deposition in the sheltered region, but significant deposition peaks were found behind the screens. The natural structures had potential to reduce drift deposition when their height was at least equal to the height of the spray nozzle(s). The drift deposition at short distances behind the natural structures was higher than deposition behind artificial structures, but conversely peaks in deposition in sheltered areas were not created by the natural structures.  相似文献   
7.
The implementation of soil and water conservation structures in semiarid areas, usually poses a difficult design problem. This is, in large part, due to the high variability of rainfall and the huge potential impact of extreme hydrologic events on structures and on the landscape in general. Magnitudes of runoff and soil loss or sedimentation rates in those environments are better not assessed by conventional modelling techniques, which tend to average out event magnitude and recurrence variability in time and space. A probability-based approach is proposed here to analyse and predict rainfall erosion losses. The maximum annual storm and its associated erosivity is used as a core element in the assessment of annual interrill and rill erosion rates. Frequency and cumulative soil loss distributions are obtained by combining verified annual and maximum daily rainfall frequency distributions with a proposed erosion algorithm. This stochastic representation of erosion permits to evaluate soil losses for the maximum annual storm, as well as annual erosion rates as a function of recurrence interval. The proposed method was verified with a short series of measured soil loss data in Cape Verde. The physical basis underlying the prediction algorithm and method in general, could be sustained by experimental data and field survey evidence. The method seems applicable to arid and semiarid ecosystems with a high seasonal concentration of precipitation and with rainfall limited to only a few major storm events.  相似文献   
8.
Soil erosion is one of the most important problems in the Loess Plateau of China affecting sustainable agriculture. Near Luoyang (Henan Province, China), field plots were constructed to measure soil erosion rates under conventional tillage practices using field-simulated rainfall. Field rainfall experiments were carried out to compare previous results from laboratory rainfall simulations on the same soil for interrill conditions. Although in the laboratory experiments, a strong correlation was found between the stream power of the runoff water and the unit sediment load, this sediment transport equation overestimated the field rainfall simulation results. Another sediment transport equation derived by Nearing et al. for rill erosion was in better agreement with the results of the field experiments, although it also overestimated these values. The measured sediment load values during the field rainfall simulations were also lower than those found during field experiments on the same soil but with a loosened surface layer. This difference indicates the importance of soil physical condition of surfce like soil structure and aggregate size, which may contribute to the discrepancy between the field and laboratory experiment results.  相似文献   
9.
Rainfall simulations were conducted on a loess derived silt loam soil (Henan province, P.R. China) under conventional tillage. This tillage practice is widespread and involves the turning of the plough layer and the wheat stubble in July (primary tillage), followed by a secondary tillage operation in October. Soil samples were collected and in situ measurements were done before each rainfall simulation in order to analyse soil physical properties after successive simulated rainfall events. The purpose of this study was to determine rainfall induced changes in saturated hydraulic conductivity, bulk density, penetration resistance, water retention and soil erodibility. The results only showed significant differences in soil bulk density and erodibility when applying successive rainfall events. Penetration resistance and water retention (at matric potentials ≤ − 3 kPa) were not significantly affected and soil surface sealing was not observed. This was also confirmed by the infiltration measurements, where no significant differences in saturated hydraulic conductivity were found. From a soil conservation point of view, this study indicated that the primary tillage operation (i.e. ploughing at the beginning of July) is rather disadvantageous: the saturated hydraulic conductivity is not significantly affected, but the soil erodibility is considerably higher in comparison to a consolidated soil. Furthermore, the beneficial effects of the wheat stubble on soil and water conservation are lost by the tillage operation.  相似文献   
10.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号