首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

The present work investigates the impact of municipal solid waste mechanical separation and industrial composting on the metal content of composts and assesses the availability of Cu, Cd, Cr, Pb, and Zn at different maturation stages of compost produced at the largest mechanical biological treatment plant in Greece. Substantial metal contamination of composts was found to take place within the industrial facility, attributed to segmentation and sorption mechanisms during composting. In fresh compost, Zn is present in mobile fractions (41%), Cu is mostly held on the less mobile organic phases (57%), Cd is mostly present in bioavailable forms (51%), whereas Pb and Cr are associated with less mobile phases, such as Fe-Mn oxides and organic molecules. Cd, Cu, and Zn migrate to more inert phases during compost maturation, paralleled by the decrease of overall metal leachability. Cu and Pb concentrations (mg kg?1) exceeded the permissible limits in both composts (Fresh: Cu: 213 ± 48, Pb: 128 ± 69; Mature: Cu: 263 ± 1, Pb: 158 ± 29) and water leachates (Fresh: Cu: 106 ± 4, Zn: 126 ± 13; Mature: Cu: 50 ± 0.50, Zn: 118 ± 20). Nevertheless, toxic effects were not observed in monocot, dicot, or aquatic biosensor plants as indicated by radicle and shoot growth and visual quality ratings. Since metal availability in composts is related to their leaching potential, metal speciation studies should be conducted in leachates for the appropriate characterization of industrial composts.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号