首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  1篇
综合类   1篇
植物保护   1篇
  2011年   1篇
  2009年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Continued use of non‐specific chemical insecticides poses potential risks to the environment and to human health resulting from non‐target toxicity and increased insect resistance to these agents. Scorpions produce anti‐insect selective polypeptide toxins that bind to and modulate voltage‐sensitive ion channels in excitable tissues, thus offering alternative, environmentally safer means for insect pest control. Despite this potential, little is known about their structural elements dictating anti‐insect preference, which may be useful for the design of selective insecticides. We used a bacterial system for expression and genetic dissection of two pharmacologically distinct scorpion toxins: alpha and excitatory. By exploiting a multi‐disciplinary approach consisting of mutagenesis, protein chemistry, electrophysiology, binding and toxicity assays, and structural studies, we elucidated the bioactive surface of two anti‐insect toxins, LqhαIT and Bj‐xtrIT. In both polypeptides the bioactive surface is composed of residues surrounding the C‐terminal region. In addition, a direct, immediate approach in using the toxin genes was demonstrated by engineering baculoviruses with cDNAs encoding LqhIT2 (depressant toxin), and LqhIT1 (excitatory toxin) resulting in viral vectors with significantly improved insecticidal efficacy. © 2000 Society of Chemical Industry  相似文献   
2.
Over the last century, island biodiversity has become one of the most threatened in the world. Although many island conservation plans address biodiversity requirements at the species level, few plans address the spatial requirements of the biodiversity processes that underpin the persistence of these species. Using systematic conservation planning principles, we map the spatial components of biodiversity processes (SCBPs) and use these to design broad-scale conservation corridors for Réunion Island. Our method is based upon a literature review, expert knowledge, spatially explicit base data, conservation planning software, and spatial modelling. We combine a target-driven algorithm with least-cost path analyses to delineate optimal corridors for capturing key biodiversity processes while simultaneously considering biodiversity pattern targets, conservation opportunities, and future threats. We identify five SCBPs: the oceanic-terrestrial interface; riverine corridors; macrohabitat interfaces; the boundaries of isolated topographic units; and lowland-upland gradients. A large proportion of the SCBPs (81.3%) is currently untransformed, whereas 3% is irreversibly transformed by urbanisation and 15.7% is transformed but restorable. However, SCBPs are almost fully disrupted by urbanisation in the lowlands, thereby compromising functional corridors along full altitudinal gradients. This study is a contribution toward the reconciliation of conservation versus development objectives on Réunion Island but we believe that the delineation method is sufficiently general to be applied to other islands. Our results highlight the need for integrating marine, coastal and terrestrial conservation planning as a matter of urgency, given the rapid transformation of coastal areas on islands.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号