首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2篇
农作物   1篇
  2022年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Chronic discharge of surplus organic matter is a typical side effect of fish aquaculture, occasionally leading to coastal eutrophication and excessive phytoplankton growth. Owing to their innate filter-feeding capacity, marine sponges could mitigate environmental impact under integrated multitrophic aquaculture (IMTA) scenarios. Herein, we investigated the clearance capacity of four ubiquitous Mediterranean sponges (Agelas oroides, Axinella cannabina, Chondrosia reniformis and Sarcotragus foetidus) against three microalgal substrates with different size/motility characteristics: the nanophytoplankton Nannochloropsis sp. (~3.2 μm, nonmotile) and Isochrysis sp. (~3.8 μm, motile), as well as the diatom Phaeodactylum tricornutum (~21.7 μm, nonmotile). In vitro cleaning experiments were conducted using sponge explants in 1 L of natural seawater and applying different microalgal cell concentrations under light/dark conditions. The investigated sponges exhibited a wide range of retention efficiencies for the different phytoplankton cells, with the lowest average values found for A. cannabina (37%) and the highest for A. oroides (70%). The latter could filter up to 14.1 mL seawater per hour and gram of sponge wet weight, by retaining 100% of Isochrysis at a density of 105 cells mL−1, under darkness. Our results highlight differences in filtering capacity among sponge species and preferences for microalgal substrates with distinct size and motility traits.  相似文献   
2.
Humic substances are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the mechanisms of proton and metal binding to humic substances is of fundamental importance in geochemical modelling and prediction of cation speciation in the environment. This work reports results on copper binding on humic acids obtained through a thorough experimental and modelling approach. Two humic acids, a reference purified peat humic acid isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil, were experimentally studied at various pH values (4, 6 and 8), humic acid concentrations (ranging from 20 to 200 mg?L?1) and ionic strength (0.1 and 0.01 M NaNO3). The binding of copper to humic acids was determined over wide ranges of copper ion concentrations using a copper ion selective electrode. The copper binding isotherms obtained at different conditions have shown that copper binding is dependent on the pH and ionic strength of the solution and on the concentration of both humic acids. Copper binding experimental data were fitted to non-ideal competitive adsorption NICA-Donnan model and the model parameter values were calculated. Both Cu2+ and CuOH+ species binding to humic acid with different binding affinities were considered. Two sets of the NICA-Donnan parameters have been calculated: one for humic acid concentrations of ??100 mg?L?1and one for humic acid concentration of 20 mg?L?1. The meaning of the parameters values for each concentration level is also discussed.  相似文献   
3.
The evaluation of the contribution of natural sources to PM10 and PM2.5 concentrations is a priority especially for the countries of European south strongly influenced by Saharan dust transport events. Daily PM2.5 concentrations and composition were monitored at an urban site at 14 m above ground level, at the National Technical University of Athens campus from February to December 2010. The typical dust constituents Si, Al, Fe, K, Ca, Mg, and Ti were determined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Sulfur, a tracer of anthropogenic origin and major constituent of PM2.5, was determined by both WDXRF and ionic chromatography. The contribution of dust and sulfates in PM2.5 was calculated from the analytical determinations. An annual mean of 20 μg/m3 was calculated from the mean daily PM2.5 concentrations data. Twenty-two per cent of daily concentrations of PM2.5 reached or exceeded the EU annual target concentration of 25 μg/m3. The exceedances occurred during 13 short periods of 1–4 days. Back-trajectory analysis was performed for these periods in order to identify the air masses origin. From these periods, ten periods were associated to Saharan dust transport events. The most intense dust transport event occurred between February 17th and 20th and was responsible for the highest recorded PM2.5 concentration of 100 μg/m3 where the dust contribution in PM2.5 reached 96 %. The other dust transport events were less intense and corresponded to less pronounced enhancements of PM2.5 concentrations, and their contribution ranged from 15 to 39 % in PM2.5 concentrations. Air masses originated from northwest Africa while the influence of central Sahara was quite smaller.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号