首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   5篇
林业   5篇
  59篇
农作物   1篇
水产渔业   1篇
畜牧兽医   1篇
  2018年   2篇
  2016年   2篇
  2014年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1990年   3篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
Based on recent findings in the literature, we developed a process‐oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co‐action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo‐mineral interactions for OM stabilization in the passive pool is well‐known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site‐ and horizon‐specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo‐mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo‐mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool.  相似文献   
2.
Aluminium (Al) is abundant in soils, but the influence of Al on the mineralization of dissolved organic carbon and thus on carbon sequestration in soil is only poorly understood. We investigated the extent and rate of mineralization of dissolved organic carbon at various Al/C ratios. Dissolved organic carbon extracted from Oi and Oa layers under coniferous and deciduous forest was incubated with initial molar Al/C ratios from < 0.004 to 0.44 for 130 days. Mineralization was quantified by measurement of CO2. Rapidly and slowly mineralizable pools of dissolved organic C and their decomposition rate constants and half‐lives (as a measure of labile and stable C) were modelled with a double exponential equation. Increasing initial Al/C ratios up to 0.1 led to a considerable decrease in mineralization (up to 50% compared with control samples). The half‐life of the stable C pool increased up to 4‐fold, whereas the half‐life of the labile C pool was unaffected. Ratios of Al/C > 0.1 did not further decrease the mineralization, but led to increasing concentrations of free Al3+ in solution, and to increasing Al/C ratios in the precipitate, indicating that the Al complexation capacity of dissolved organic C was exceeded. Decrease in mineralization as well as formation of particulate organic matter (up to 56% of initial dissolved organic C) affected mainly the stable pool. Mineralization of dissolved organic C can be predicted from UV absorption by use of exponential regressions, but adding an Al variable did not improve the prediction significantly. We conclude that Al influences substantially the biodegradability of dissolved organic C percolating into the mineral soil, which may have consequences for the carbon sequestration in the soil. Declining Al concentrations would increase the mineralization of dissolved organic C only if the Al/C ratio becomes less than the ‘threshold value’ in the range of the Al complexation capacity of the dissolved organic C.  相似文献   
3.
4.
5.
6.
Recent evidence from nitrogen (N) saturation studies indicates that forest floors in moderately impacted forests are the primary sink for atmospheric N inputs. Some researchers have suggested that the sink capacity of organic horizons is dependent on the amount of available carbon (C), which can be used for microbial N assimilation. To test the hypothesis that C limitation in forest floors exposed to chronic N deposition leads to an enhanced N leaching, a field C input manipulation experiment is under way in a deciduous forest. Since September 1999 aboveground C input has been doubled (by doubling litter input or by amending glucose) or excluded in replicated plots. Here we report the short-term response of concentrations of dissolved inorganic N (DIN: NO3 ?-N and NH4 +-N) in forest floor percolate to the C input manipulation. In autumn following the C input manipulation, DIN concentrations in forest floor percolate decreased in all plots except the No Litter plots compared to the pre-treatment summer concentrations. In contrast, the concentrations of DIN in the No Litter plots remained high. A different seasonal pattern of DIN leaching among treatments, along with measurements of microbial biomass C and potential nitrification rates of forest floor samples, indicates that seasonal N dynamics in the forest floor are largely regulated by C availability changes assoicated with litterfall C input.  相似文献   
7.
To evaluate ecosystem response to changing atmospheric deposition, element budgets were established over the period from 1973 to 1991 for a Norway Spruce (Picea abies (L.) Karst.) site. Budgets for Na+, Cl?, Ca2+, Mg2+, N, S and H+ were based on total deposition and seepage water fluxes. The deposition of Ca2+, Mg2+, particularly, of S and H+ decreased with time, while calculated N deposition remained constant at a high level. The decrease in Ca2+ deposition led to a reduction of Ca2+ fluxes with seepage water. The decrease of Mg2+ deposition did not have an effect on the output fluxes of Mg2+. The reversibility of soil and seepage water acidification by reduced S deposition was delayed by the release of previously accumulated soil SO 4 2? . The highest NO 3 ? fluxes were observed during the period of 1986 to 1988; NO 3 ? fluxes in general demonstrated a considerable annual and periodic variation. Total N accumulation in the ecosystem amounted to nearly 590 kg ha?1 yr?1 during the observation period. The major sink of N in the spruce site is the aggrading humus layer. The results emphasize the need for measurements over several years to make conclusions regarding the function of ecosystems in response to atmospheric deposition.  相似文献   
8.
Soil organic matter (SOM) consists of various functional pools that are stabilized by specific mechanisms and have certain turnover rates. For the development of mechanistic models that predict changes in SOM storage, these pools have to be quantified and characterized. In the past, numerous fractionation schemes have been developed to separate and analyse such SOM fractions. In this review, the SOM fractions obtained with such operational fractionation procedures are described in terms of their pool sizes, chemical properties, and turnover rates. The main objective of this review is to evaluate these operationally defined fractions with respect to their suitability to describe functional SOM pools that could be used to parameterize SOM turnover models. Fractionation procedures include (1) physical separation of SOM into aggregate, particle size, and density fractions and fractions according to their magnetic susceptibility, and (2) various wet chemical procedures that fractionate SOM according to solubility, hydrolysability, and resistance to oxidation or by destruction of the mineral phase. Furthermore, combinations of fractionation methods are evaluated.The active SOM pool with turnover rates <10 years may best be represented by the soil microbial biomass and the light fraction (<1.6-2 g cm−3) obtained by density fractionation (if black carbon contents are considered). Most chemical and physical fractionations as well as combinations of methods yield SOM fractions that are not homogeneous in terms of turnover rates. It has proven to be particularly difficult to isolate functional fractions that represent the passive model pools in which the majority of soil SOM is stabilized. The available fractionation methods do not correspond to specific stabilization mechanisms and hence do not describe functional SOM pools. Another problem is that comprehensive data for turnover rates and data for whole soil profiles are only now becoming available, especially for new fractionation methods. Such information as well as the use of specific markers and compound-specific isotope analysis may be important for future differentiation and evaluation of functional SOM fractions.  相似文献   
9.
The purpose of this investigation was to describe the element budget of a heathland area in Northwest Germany by measuring the fluxes of elements within the ecosystem. The following fluxes were considered: input by precipitation, canopy-drip, mineralisation, ion uptake, litterfall, output with seepage water. The elements H, Na, K, Ca, Mg, Mn, Fe, Al, S, P, CI, NO, NH, Norg were analysed, the period of investigation was one year. The results demonstrate the high importance of deposited nutrients like N (especially No3), Ca and Mg for the element budget and the stability of a heath-ecosystem. The internal turnover of K, Ca, Mg and Mn within the ecosystem mainly took place by leaching. No leaching was found for N, P, AI, Fe, S, CI, Na. For these elements litterfall was the dominant internal way of cycling. The humus layer was a sink for total-N, NO, Ca, Mg, Mn, Fe and S. NO, Ca, Mg, Mn and S were removed from the percolating solution, while for Fe and especially N and Mn an inhibition of mineralisation was found. The element balance for the mineral soil showed that this part is a sink for Hand a source mainly for Al, Ca and Mg, less for K and Na. From the cation/anion balance of the storage changes in mineral soil the ecosystem-internal H ion production was calculated as 0.4 keq per ha and year. It may be traced back to an uptake of NH, and dissociation of fulvic acids in the mineral soil. The results are discussed with respect to the development, stability and management of heath-ecosystems.  相似文献   
10.
Contribution to the element output with seepage under different ecosystems in the flat plains of Northwest Germany Over a period of one year samples of seepage water were taken from 3 different ecosystems of the pleistocene lowlands of Northwest Germany. A mixed crop of oak, a pure pine forest and a heathland area were chosen. The ions H, Na, K, Ca, Mg, Mn, Fe, Al, PO4, SO4, Cl, NO3 and NH4 were analysed. A balance calculation was done based on measurements or estimations of total evaporation and on measurements of element input with rainfall. The data indicate different interception (dry deposition) rates of air pollutants for the 3 stands. Al-ions were found in the soil solution under the pine stand and under the heathland area in a depth of 1.2 m. This status has not yet developed in the soil of the oak stand, but seems to be reached soon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号