首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  16篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   3篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Leaching of inorganic N species to stream waters from upland areas of the UK is increasing, reflecting the increases in atmospheric deposition of nitrogen species due to increased levels of vehicular emissions. Bracken cover in UK uplands is also increasing overall ( Taylor, 1986 ), and the architectural nature of bracken has been shown to both increase deposition of atmospheric constituents to soils and change their chemical and physical nature. We have tested the nutrient status of upland podzols from the Lake District, Cumbria, UK, from under both moorland grass and bracken. The results show reduced levels of base cations and nitrate throughout the profile and decreases in the organic matter content of surface horizons as a consequence of bracken encroachment. We also report increased ammonium concentrations in lower soil horizons under bracken, possibly leading to increased leaching to stream waters. These results suggest either increased leaching of soil nutrients due to bracken encroachment or increased storage of nutrients within the bracken rhizome system. Results also suggest changes in either microbial activity or the microbial community of podzols, possibly due to the allelopathic nature of bracken. This may have caused changes in the soil nutrient dynamics, possibly accounting for some of the changes seen. We hypothesize that increased bracken cover within the British uplands has the potential to increase leaching of inorganic nitrogen to upland streams.  相似文献   
2.
Forest soil organic horizons from old and young plantations in the Alltcailleach Forest, N.E. Scotland were first sampled in 1949/50 and resampled in 1987. Copper, Pb and Zn in the soils were determined simultaneously on the original (stored) and the resampled soils. Overall mean Cu and Pb concentrations increased from 12.7 to 15.3 and 49.5 to 60.8 mg kg?1 between 1949/50 and 1987. Zinc concentrations decreased from 76.4 to 60.7 mg kg?1. Amounts of all 3 heavy metals increased because of increases in the thickness of organic horizons. Mean accumulation rates for Cu, Pb and Zn were 39.1, 186 and 114 g ha?1 yr?1, respectively. The rate of accumulation of Pb was significantly related to the rate of accumulation of organic matter. Copper and Zn concentrations were directly correlated with pH and inversely correlated with C/N ratio, whereas Pb was inversely correlated with pH and directly correlated with % C and C/N ratio. The more acidic soil organic horizons therefore contained higher concentrations of Pb and lower concentrations of Cu and Zn.  相似文献   
3.
4.
Abstract. Fifteen soil profiles in the Alltcailleach Forest in NE Scotland have been resampled after almost 40 years. The pH, in 0.01 M CaCl2, of the soil has decreased by 0.07 to 1.28 units in 80% of the surface organic horizons and by 0.16 to 0.54 units in 73% of the mineral horizons below 40 cm. The key factors governing increases and decreases in soil pH are changes in ground vegetation and tree canopy, although some effects of acid deposition cannot be ruled out.  相似文献   
5.
6.
The Scottish soils most sensitive to acidification from acid deposition are peats and those derived from quartzite or Devonian and Torridonian sandstones. It is shown that the surface horizons of Calluna moorland podzols derived from these mineral parent materials behave in a similar way to peats, in that their pH depends upon cation exchange equilibria between H+ and Ca2+. The pH is therefore related, as might be expected from the ratio law, to the ratio [H+]:[Ca2+], and this relationship may be used to predict the effect of emission reductions or increases upon these soils.  相似文献   
7.
Abstract. The approximate time-scales for serious lowering of the base status of acidic upland soils in northeast Scotland have been based on assessments of geochemical weathering rates in two upland catchments. Periods of 1100 and 12000 years are obtained for soils evolved primarily from granite and quartz-biotite-norite respectively. Factors regulating the rate of removal of base cations in drainage water are discussed, to elucidate those which significantly influence long-term rates of soil acidification. The relationship between base cation leaching and river water acidity is briefly considered.  相似文献   
8.
Ammonium‐N concentrations were frequently observed to exceed nitrate‐N concentrations in an intermittently flowing stream draining acid grassland in North Yorkshire. This prompted the design of a soil microcosm experiment to investigate the role of litter in the leaching of ammonium and nitrate from soil profiles during winter. Drainage water was analysed weekly for N species, pH, mineral acid anions and dissolved organic carbon (DOC) for a period of 11 weeks, while extractable mineral‐N was determined after 5 and 11 weeks. The results demonstrate that litter plays an important role in reducing mineral‐N leaching in winter months. They also suggest that DOC from the litter participates in mineral‐N retention in the soil profiles in winter. Ammonium‐N and nitrate‐N concentrations measured in the microcosm drainage water are similar to those of the stream.  相似文献   
9.
The majority of Scottish upland soils are particularly sensitive to acid deposition because of their low weathering rates. The compositions of the exchangeable base cations of such soils in the United Kingdom are dominated by sea salt inputs rather than by mineral weathering inputs of base cations. Catchments with low mineral weathering rates are also those particularly susceptible to freshwater acidification. Therefore, catchments exhibiting a high sea salt effect should also exhibit the most acid waters under base flow and storm flow conditions. A field evaluation study based on 61 catchments in NE Scotland has shown that this is indeed the case. River water pH under both base flow and high flow conditions is correlated stronhly with the relative contribution of Na+ to the sum of Ca2+, Mg2+ and Na+. From these results, an attempt is being made to produce a quantitative signature of weathering for the soils within the catchment upstream of the sampling point. Representative soil samples from the LFH, AE, B and C horizons and on 4 different parent materials have been obtained from the surrounding catchments to validate the above results for associated soil solutions. Sampling took place on upland moorland podzols under Calluna vulgaris. Tension lysimeters were used to sample the soil solutions so that their chemistry could be compared with that of the relevant river water.  相似文献   
10.
It is hypothesized that episodic introductions of road salt severely disrupt the soil nitrogen cycle at a range of spatial and temporal scales. A field-scale study has confirmed impacts on the nitrogen cycle in soil, soil solution and river samples. There is evidence that ammonium-N retention on cation exchange sites has been reduced by the presence of sodium ions, and that ammonium-N has been flushed from the exchange sites. Increases in soil pH have been caused in naturally acidic uplands. These have enhanced mineralization of organic-N, especially nitrification, leading to a reduction in the mineralizable-N pool of roadside soils. There is evidence to support the hypothesis that organic matter content has been lowered over decades either through desorption or dispersal processes. Multiple drivers are identified that contribute to the disruption of nitrogen cycling processes, but their relative importance is difficult to quantify unequivocally. The influence of road salt on soil and soil solution declines with distance from the highway, but impacts on water chemistry in a local stream are still strongly evident at some distance from the road.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号