首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2018年   1篇
  2017年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Purpose

This study investigates the effects of surface liming on soil attenuation radiation properties. For this, measurements of soil chemical attributes (pH, organic carbon, H+Al, Al3+, Ca2+, and Mg2+) and attenuation radiation parameters (mass attenuation coefficient, μm, atomic and electronic cross sections, σa and σe, effective atomic number and electron density, Zeff and Nel) were carried out. This aim was motivated by the fact that possible μm variation might cause as well variation in the determination of soil physical properties.

Materials and methods

The studied soil, classified as a Dystrudept sity-clay, is located in South Brazil. The trial consisted of five stripes, one of them under pasture and the remaining under no-till system (NTS). Lime rates of 0, 10, 15, and 20 t ha?1 were broadcast on the NTS soil surface. Disturbed soil samples were collected 30 months after liming at the top (0–10 cm) and subsoil (10–20 cm) layers. Soil chemical attributes were characterized following standard experimental procedures. The soil oxide composition, obtained by EDXRF analysis, was used to calculate μm for 241Am and 137Cs photon energies with XCOM computer code. μm values were employed to calculate σa, σe, Zeff, and Nel and to predict variations in soil bulk density (ρ) and total porosity (φ).

Results and discussion

Surface liming notably increased contents of soil pH, Ca2+, and Mg2+ while reduced H+Al and Al3+ at the top soil layer, where μm, σa, σe, and Zeff were also increased with the lime rates. However, at the subsoil layer, liming neither lessened soil acidity nor induced remarkable changes in the attenuation parameters. When using 137Cs photon energy, incoherent scattering totally dominated over the radiation interaction processes whereas photoelectric absorption and coherent scattering substantially contributed when 241Am photon energy was used. Therefore, the increasing in soil attenuation parameters at the top soil layer was more accentuated considering 241Am than 137Cs photon energy. Variation in μm caused considerable variation in ρ and φ only for 241Am photon energy.

Conclusions

The findings regarding the effect of μm variation induced by liming on the determination of soil physical properties are extremely relevant because traditionally, in the soil science area, μm values are calculated without considering any chemical modification to which the soil can be submitted. Bearing in mind that ρ and φ are important parameters from the agricultural and environmental points of view, not representative measurements of μm can lead to biased values of ρ and φ.

  相似文献   
2.

Purpose

Brazilian soils that present extremely hard sub-superficial horizons when dry and friable when humid are similar to the Australian and South African hardsetting horizons whose hardness can be mainly related to low crystallinity. Studies involving refinement by the Rietveld method with X-ray diffraction (RM-XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and their relation have not been carried out in hardsetting horizon soils. Thus, the objective of this study is to obtain information about the kaolinite in the hardsetting horizon of a Yellow Argisol clay fraction, taking into consideration the results of isomorphic substitution, crystallite average size, and microstrains, relating them to particle image analysis regarding their morphology and size.

Materials and methods

Soil samples were collected in the hardsetting horizon of a Yellow Argisol in the Coastal Tablelands region, which covers the whole Brazilian Northeast coast and part of the Southeast region. The sample was powdered, sieved, and submitted to dispersion and physical fractioning process by sedimentation. The clay fraction was analyzed by RM-XRD, AFM, and SEM techniques.

Results and discussion

The RM-XRD provided improvement of indices with isomorphic substitutions in the goethite [Fe0.70Al0.30O(OH)], kaolinite [Al1.44Fe0.56Si2O5(OH)4], and halloysite [Al1.42Fe0.58Si2O5(OH)4]; 29 nm crystallite average size; 5 × 10?3 microstrain; and 49.5% kaolinite. AFM analyses indicated particle average size from 80 to 250 nm and average height from 60 to 80 nm. By relating this data, it was possible to estimate that the particles under analysis are kaolinite composed of 3 to 9 crystallites and stacking of 88 to 112 layers.

Conclusions

The process, analyses, and comparisons such as crystallographic and morphologic information about the kaolinite mineral particles contribute to the comprehension of the hardsetting horizon soil nature as well as other soils that present minerals with a high degree of isomorphic substitution.
  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号