首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The regulative effect of long-term application of biochemically contrasting organic inputs such as rice straw (4.7 g?N; 6.5 g polyphenols), groundnut stover (22.8 g?N; 12.9 g polyphenols) and leaf litter of tamarind (13.6 g?N; 31.5 g polyphenols) and dipterocarp (5.7 g?N; 64.9 g polyphenols) on fungal decomposers was studied in a tropical sandy soil. Fungal decomposers were assayed by 18S rRNA gene-based community profiling and were combined with measurements of selected enzyme activities. Dipterocarp residue application depressed fungal abundance, but promoted specialized decomposers (e.g., Aspergillus fumigatus and Anguillospora longissima) with increases in polyphenol oxidase activity. The degree of functional redundancy for invertase and B-glucosidase activities was induced after the addition of easily decomposable rice straw and groundnut stover. Higher N availability in the tamarind treatment increased, in contrast to low N rice straw, fungal abundance (i.e., Fusarium oxysporum, Myceliopthora thermophila, and Aspergillus versicolor) and promoted invertase and B-glucosidase activities, while peroxidase activity was depressed. In addition, N availability seemed to regulate not only decomposing soil fungi, but also the abundance of protozoan decomposers whose actual contribution to N turnover in soils is still poorly understood. Prospective research should thus consider apart from studying decomposing fungi also protozoa and bacteria to better understand the microbially mediated degradation of complex organic materials in soils.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号