首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2020年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Blended oils comprising coconut oil (CNO) and rice bran oil (RBO) or sesame oil (SESO) with saturated fatty acid/monounsaturated fatty acid/polyunsaturated fatty acid at a ratio of 1:1:1 and polyunsaturated/saturated ratio of 0.8-1 enriched with nutraceuticals were prepared. Blended oils (B) were subjected to interesterification reaction using sn-1,3 specific Lipase from Rhizomucor miehei. Fatty acid composition and nutraceutical contents of the blended oil were not affected by interesterification reaction. Male Wistar rats were fed with AIN-76 diet containing 10% fat from CNO, RBO, SESO, CNO+RBO blend (B), CNO+SESO(B), CNO+RBO interesterified (I), or CNO+SESO(I) for 60 days. Serum total cholesterol (TC), low-density lipoprotein cholesterol, and triacylglycerols (TAGs) were reduced by 23.8, 32.4, and 13.9%, respectively, in rats fed CNO+RBO(B) and by 20.5, 34.1, and 12.9%, respectively, in rats fed CNO+SESO(B) compared to rats given CNO. Rats fed interesterified oils showed a decrease in serum TC, low-density lipoprotein cholesterol (LDL-C), and TAGs in CNO+RBO(I) by 35, 49.1, and 23.2 and by 33.3, 47, and 19.8% in CNO+SESO(I), respectively, compared to rats given CNO. Compared to rats fed CNO+RBO blended oils, rats on CNO+RBO interesterified oil showed a further decrease of 14.6, 24.7, and 10% in TC, LDL-C, and TAG. Rats fed CNO+SESO interesterified oils showed a decrease in serum TC, LDL-C, and TAG by 16.2, 19.6, and 7.8%, respectively, compared to rats given blended oils of CNO+SESO (B). Liver lipid analysis also showed significant change in the TC and TAG concentration in rats fed blended and interesterified oils of CNO+RBO and CNO+SESO compared to the rats given CNO. The present study suggests that feeding fats containing blended oils with balanced fatty acids lowers serum and liver lipids. Interesterified oils prepared using Lipase have a further lowering effect on serum and liver lipids even though the fatty acid composition of blended and interesterified oils remained same. These studies indicated that the atherogenic potentials of a saturated fatty acid containing CNO can be significantly decreased by blending with an oil rich in unsaturated lipids in appropriate amounts and interesterification of blended oil.  相似文献   
2.
Pathogenesis-related (PR) proteins are one of the major and preliminary proteins accumulated as a defense against biotic stress. This defense response can be induced by using beneficial rhizobacteria, which has been studied in various host-pathogen interactions. In the present study, eleven Pseudomonas isolates were assessed for their potential to ferment sorbitol, reduce nitrate, and produce mycolytic enzymes, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, phenazine antibiotics, and N-acyl homoserine lactones (AHLs). All isolates were tested against the host-specific pathogen Fusarium oxysporum MTCC1755 in tomato under greenhouse conditions, and shortlisted isolates were tested for their rhizosphere competence. In-vitro test results showed that the isolates were able to produce mycolytic enzymes, including protease, lipase, chitinase, cellulase, and amylase, and the antibiotic phenazine and were negative for pyoluteorin. All the isolates except two were positive for ACC deaminase production. Greenhouse results showed that the isolates M80, M96, and T109 significantly reduced symptoms of Fusarium wilt. Extended greenhouse tests under autoclaved and unautoclaved soil conditions showed that M80, M96, and T109 were excellent rhizosphere competitors and were identified as Pseudomonas putida. In brief, the defense-specific biochemical variations in the host could describe the improved defense against Fusarium wilt occurring in the primed plants. These three Pseudomonas strains could be used as potential biocontrol agents, along with their rhizosphere competence.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号