首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
农学   5篇
  1篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
Inheritance of fertility restorer gene in pigeonpea was studied using F2 and BC1F1 populations derived from cross AL103A × IC245273. It was found to be controlled by single dominant gene. Out of 228 SSR primer pairs, 33 primer pairs showed parental polymorphism, while four primers were found polymorphic in bulk segregant analysis (BSA). These four primers viz., CcM 1615, CcM 0710, CcM 0765 and CcM 1522 were used for genotyping of F2 population and were found to be placed at 3.1, 5.1, 28.1 and 45.8 cM, respectively. Two of them, CcM 1615 and CcM 0710, evinced clear and unambiguous bands for fertility restoration in F2 population. The Rf gene was mapped on linkage group 6 between the SSR markers CcM 1615 and CcM 0710 with the distances of 3.1 and 5.1 cM, respectively. The accuracy of the CcM 1615 was validated in 18 restorers and six maintainer lines. The marker CcM 1615 amplified in majority of male restorer lines with a selection accuracy of 91.66%.  相似文献   
2.
Fusarium wilt (FW; caused by Fusarium oxysporum f. sp. ciceris) and Ascochyta blight (AB; caused by Ascochyta rabiei) are two major biotic stresses that cause significant yield losses in chickpea (Cicer arietinum L.). In order to identify the genomic regions responsible for resistance to FW and AB, 188 recombinant inbred lines derived from a cross JG 62 × ICCV 05530 were phenotyped for reaction to FW and AB under both controlled environment and field conditions. Significant variation in response to FW and AB was detected at all the locations. A genetic map comprising of 111 markers including 84 simple sequence repeats and 27 single nucleotide polymorphism (SNP) loci spanning 261.60 cM was constructed. Five quantitative trait loci (QTLs) were detected for resistance to FW with phenotypic variance explained from 6.63 to 31.55%. Of the five QTLs, three QTLs including a major QTL on CaLG02 and a minor QTL each on CaLG04 and CaLG06 were identified for resistance to race 1 of FW. For race 3, a major QTL each on CaLG02 and CaLG04 were identified. In the case of AB, one QTL for seedling resistance (SR) against ‘Hisar race’ and a minor QTL each for SR and adult plant resistance against isolate 8 of race 6 (3968) were identified. The QTLs and linked markers identified in this study can be utilized for enhancing the FW and AB resistance in elite cultivars using marker-assisted backcrossing.  相似文献   
3.
Yellow mosaic disease (YMD) is one of the major diseases affecting mungbean (Vigna radiata (L.) Wilczek). In this study, we report the mapping of the quantitative trait locus (QTL) for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean. An F8 recombinant inbred line (RIL) mapping population was generated in Thailand from a cross between NM10-12-1 (MYMIV resistance) and KPS2 (MYMIV susceptible). One hundred and twenty-two RILs and their parents were evaluated for MYMIV resistance in infested fields in India and Pakistan. A genetic linkage map was developed for the RIL population using simple sequence repeat (SSR) markers. Composite interval mapping identified five QTLs for MYMIV resistance: three QTLs for India (qYMIV1, qYMIV2 and qYMIV3) and two QTLs for Pakistan (qYMIV4 and qYMIV5). qYMIV1, qYMIV2, qYMIV3, qYMIV4 and qYMIV5 explained 9.33%, 10.61%, 12.55%, 21.93% and 6.24% of variation in disease responses, respectively. qYMIV1 and qYMIV4 appeared to be the same locus and were common to a major QTL for MYMIV resistance in India identified previously using a different resistant mungbean.  相似文献   
4.
Yellow mosaic disease (YMD) is the major constraint of mungbean for realizing high productivity worldwide. Moreover, management of disease using YMD‐resistant genotypes is the simplest approach. Therefore, based on a preliminary screening of 220 genotypes during the year 2010 and 2011 at 17 locations, a set of 25 genotypes was further selected to evaluate at six locations over 2 years for identification of more stable resistant genotypes. The genotype and genotype × environment (GGE) analysis indicated that the genotypes and environment effects were significant (P < 0.001) for YMD incidence. Interestingly, the GGE biplot analysis successfully accounted for 74.71 per cent of the total variation with three genotypes (ML 818, ML 1349 and IPM 02‐14) showing high degree of resistance and stability over the locations. Notably, a strong positive association was observed between disease reaction and temperature, relative humidity and rainfall. As crop is grown in diverse growing environments, aforementioned genotypes can be used as stable/durable sources for future breeding programme to develop YMD‐resistant cultivars.  相似文献   
5.
Introgression of yellow mosaic disease (YMD) resistance and effect of recurrent parent genome (RPG) on grain yield was studied in 84 soybean genotypes from four populations namely, F2:7, BC1F6, BC2F5 and BC3F4 derived from cross JS335 x SL525. It was observed that in F2:7, BC1F6, BC2F5 and BC3F4 derived lines, RPG contribution was 42.5%, 54.9%, 66.4% and 77.6%, respectively, which is significantly less than expected values. Linkage drag from donor parent with YMD resistance gene may be a possible reason for such deviations. Average grain yield per plant in F2:7, BC1F6, BC2F5 and BC3F4 generations was observed as 13.0, 14.3, 14.9 and 16.1 g, respectively. It was observed that genotypes with more than 80% RPG observed to have both YMD resistance and good yield potential. Graphical genotyping (GGT) analysis revealed that maximum RPG was recovered in chromosomes 8 and 10 and maximum introgression occurred in chromosomes 6 and 19. Our results demonstrated that RPG was positively associated with yield as evident from yield increase with increase in RPG.  相似文献   
6.
Soil microbes play a vital role in improving plant growth, crop productivity, and soil health through solubilization of essential nutrients. Present investigation was conducted to access the efficacy of Bradyrhizobium sp. LSBR-3 and the indigenous phosphate-solubilizing Pseudomonas oryzihabitans LSE-3 in improving the symbiosis, nutrient accumulation, and yield of soybean. The isolate LSE-3, selected on the basis of phosphate solubilization, was screened for beneficial traits, antagonistic activities, and pathogenicity. The levels of indole acetic acid production (50.34 ±2.35 μg mL-1), phosphate solubilization (184.4 ±7.4 mg L-1), biofilm formation (optical density at 560 mm, 1.389 6 ±0.04), siderophore production (121.46 ±1.61 μg mL-1), and 1-aminocyclopropane-1-carboxylate deaminase activity (0.51 ±0.07 mmol α-ketobutyrate μg-1 protein h-1) were significantly higher with the dual inoculants (LSBR-3 and LSE-3) than with the single inoculant LSBR-3. The plant growth-promoting traits of single and dual inoculants were evaluated for the synergistic effects on soybean under field conditions. Soybean plots treated with LSBR-3 + LSE-3 exhibited improvement in seed germination, plant height, plant biomass, and chlorophyll content compared with the uninoculated control. Dual inoculant treatments resulted in significantly higher symbiotic efficacy evidenced by increased nodulation (40.0 ±0.75 plant-1), nodule biomass (188.52 ±6.29 mg plant-1), and leghemoglobin content (11.02 ±0.83 mg g-1 fresh nodule), and significantly increased activities of phosphatase (75.16 ±3.17 and 58.77 ±6.08 μg p-nitrophenol g-1 h-1 for alkaline and acid phosphatase, respectively) and dehydrogenase (32.66 ±1.92 μg triphenylformazan g-1 h-1) compared with the control. Dual inoculation with LSBR-3 and LSE-3 enhanced the uptake of macro- and micronutrients, reduced Na content in shoots, and resulted in 10.85% higher grain yield and ca. US$96.80 ha-1 higher profit compared with the control. This is the first report on the effectiveness of combined inoculation of LSE-3 and LSBR-3 in promoting the growth, symbiotic efficacy, and yield of soybean for sustainable agriculture.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号