首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  11篇
水产渔业   1篇
畜牧兽医   1篇
园艺   1篇
植物保护   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2013年   7篇
  2007年   3篇
  2002年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Chickpea (Cicer arietinum L.) seeds are a good source of protein and mineral nutrients. However, there is no information regarding harvest timing on yield and mineral composition of chickpea seeds. The effect of harvest timing on seed yield, some yield components and mineral nutritional value of seeds of field grown chickpea plants in two different sites were studied. The mineral composition of chickpea straw depending on harvest timing was also evaluated in order to explain the variations of seed mineral concentrations in sink-source relationship manner. Yield and mineral nutritional value of chickpea were significantly affected by harvest timing. When compared to the seed yield at optimal harvest time, seed yield was 18% and 9% lower in the early harvest and 27% and 31% in the late harvest in Site 1 and Site 2, respectively. Late harvest of chickpea crops resulted in significant pod dropping and shattering. Generally, protein, phosphorus (P), calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), and manganese (Mn) concentrations of the seeds in optimal harvest were found to be greater than in early and late harvested plants. Harvest timing also results in significant variations in straw mineral nutrient concentrations of the plants. As the results of this study, it was concluded that the harvest timing is critical for yield losses and mineral nutritional value of chickpea seeds.  相似文献   
2.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   
3.
Abstract

It has been proposed that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing environmental stress tolerance in plants. In this study, the effects of seed soaked (1.0 mM for 24 h) and soil incorporated (0.1 mM and 0.5 mM) salicylic acid (SA) supply on growth and mineral concentrations of maize (Zea mays L., Hamidiye F1) grown under either salt, boron toxicity or drought-stressed conditions were investigated. Exogenously applied SA either with seed soaked (SS) or soil incorporated (SI) increased plant growth significantly in all the stresses conditions. Salicylic acid inhibited Na and Cl accumulation in saline conditions, and 0.5 mM of soil incorporated SA decreased B significantly in boron toxicity treatment. Except in drought condition, SA treatments stimulated N accumulation in plants. And P, K, Mg and Mn concentrations of SA received plants were increased in the stress conditions. These results suggest that SA regulates the response of plants to the environmental stresses and could be used as a plant growth regulator to improve plant growth and stimulate mineral nutrient concentrations under stress conditions.  相似文献   
4.
Remediation of Lead Contaminated Soils by Stabilization/Solidification   总被引:2,自引:0,他引:2  
Most available remediation technologies for treatment of heavymetal contaminated soils are very expensive and result in residues requiring further treatment. Stabilization/solidification (immobilization) techniques however, which aredesigned to decrease leaching potential of heavy metals from soil by addition of chemical additives, provide very cost-effective solutions for heavy metal contaminated soils. Thisstudy investigates the most efficient additive for immobilization of lead. To achieve this goal, several leachingexperiments were conducted for mixtures of different additives(lime, activated carbon, clay, zeolite, sand and cement) withartificially Pb contaminated (spiked) soil samples in accordancewith the Toxicity Characterization Leaching Procedure (TCLP) developed by U.S. EPA. Results showed that among the additivestried, activated carbon, clay, zeolite and sand are not very efficient for Pb immobilization. On the other hand, lime andcement are significantly effective in Pb immobilization with 88% efficiency at 1:21 lime:soil ratio and 99% efficiency at1:15 cement:soil ratio, respectively.  相似文献   
5.
The effect of increasing levels of applied phosphorus (P) and boron (B) on the growth and the concentration and uptake of P and B were examined in eight maize genotypes (Furio, Riogrande, Sele, DK 743, Helix, Missouri, Betor, and Poker) with two individual greenhouse experiments. Phosphorus was applied at 0, 50, and 100 mg kg‐1 in Experiment I and B at 0, 10, and 30 mg kg‐1 levels in Experiment II. Application of B resulted in increased concentration and uptake of B and a decreased P concentration and uptake in all genotypes. The dry weight of all genotypes was decreased by application of B. However, applied P decreased B concentration and uptake and increased P concentration and uptake of the genotypes. The dry weight of all genotypes was increased by application of P. These experiments show that B is more toxic in the absence of rather than the presence of P, and that this toxicity could be alleviated with applications of P in the calcareous soils of semiarid areas.  相似文献   
6.
Pepper (Capsicum annuum L.) plants grown in pots were irrigated with the nutrient solutions containing 50, 75, and 100 mM NaCl or a control solution. Salinity markedly decreased plant growth. Increasing salinity levels increased stomatal resistance and sodium (Na), chloride (Cl), proline contents of the plants. Potassium (K), total‐nitrogen (N), and chlorophyll content of the plants were decreased under high salinity conditions.  相似文献   
7.
Previous studies have shown that salicylic acid (SA) plays a role in the response of plants to salt and osmotic stresses. Therefore, an experiment was conducted to investigate the impact of exogenous salicylic acid on the growth, physiology and antioxidant activity of carrot (Daucus carota L. cv. Nantes) grown under combined stress of salinity and boron toxicity. The treatments consisted of salt (control, NaCl, and Na2SO4), boron (−B: 0 and +B: 25 mg B kg−1) and salicylic acid (−SA: 0 and +SA: 0.5 mmol SA kg−1). The diameter of the storage root was increased by NaCl salinity in the absence of B toxicity, however, it was increased by Na2SO4 salinity under B toxicity. For the storage root yield, NaCl salinity was more toxic than Na2SO4 salinity. With its role in plant growth regulation, SA application positively affected the storage root dry weight, S concentration, carotenoids and anthocyanin content and increased the total antioxidant activity (AA) of the shoot and storage root. SA application regulated proline and toxic ion (B, Cl) accumulation in the storage root and shoot. This study reports the long term effects of SA under stress conditions and reveals that SA was not as effective as in alleviating abiotic stress as reported in the literature conducted with short-term studies. That means long-term effects of SA would be significantly different from its short-term effects.  相似文献   
8.
The experiment was conducted to evaluate the effects of various nitrate/ chloride (NO3/Cl) ratios on growth, nitrate accumulation, and mineral absorption in carrot, Daucus carota L., plants in a controlled environment. The experiment included two Cl sources [potassium chloride (KC1) and calcium chloride (CaCl2)] and five NO/Clratios at 100/0, 90/10, 80/20, 70/30, and 60/40 with total‐nitrogen (N) concentration of 400 mg NO3 kg‐1 soil in 100/0 treatment. Fresh and dry weights of shoots and storage roots, and length and diameter of storage roots increased significantly with mixed NO3/C1 treatments with both Cl sources as compared to single NO3 (100/0) treatment. Growth was enhanced up to the 80/20 NO3/C1 treatments. With Cl present in the treatments, the concentration of total‐N unchanged and NO3 decreased in plants, and Cl and potassium (K) increased with the Cl sources. In KC1 treatments, Na absorption decreased. Calcium (Ca) content of the plants significantly differed by the treatments. It was concluded that N fertilization provided with combined Cl forms and NO3/Cl rates can enhance production of better quality carrot and at the same time decrease of the N fertilizer input.  相似文献   
9.
Given that the optimal sowing rate and inter-row spacing of Italian ryegrass raised for seed have not been determined, the objective of this research was to assess the effect of crop density on biomass and seed yields under different climate conditions, applying the AquaCrop model. The data came from experiments conducted under moderate continental climate conditions at Stitar (Serbia) and Mediterranean climate conditions at Cukurova (Turkey). At Stitar, there were three different inter-row spacings (high (Sd), medium (Sm) and low (Sw) crop densities), while at Cukurova there was only high crop density (Sn). In the calibration process, the initial canopy cover, canopy expansion and maximal canopy cover were adapted to each crop density, while the other conservative parameters were adjusted to correspond to all climate conditions. Calibration results showed a very good match between measured and simulated seed yields; the values of the coefficient of determination (0.922). The biomass simulation was very good for Cukurova (R2 = 0.97), but somewhat poorer for Stitar (R2 = 0.72). Other statistical indicators were high such as Willmott index of agreement of both the calibrated and validated data sets, for both study areas >0.916 and normalized root mean square error in the range from 9–18%. The AquaCrop model was found to be more reliable for Italian ryegrass biomass and seed yield predictions under mild winter climate conditions, with adequate water supply, compared with moderate climate and water shortage conditions.  相似文献   
10.
The use of organic materials as a source of nutrients on agricultural lands ameliorates soil physical properties as well as being an environmentally friendly way of disposing of their wastes. This study was conducted to determine effects of three organic materials (poultry litter, cattle manure, leonardite) on yield and nutrient uptake of silage maize. Poultry litter and cattle manure were applied based on phosphorus (P) or nitrogen (N) requirements of the crop whereas leonardite was applied only one dose (500 kg ha?1) and also combined with three inorganic fertilizer doses (100%, 75%, 50% of recommended inorganic fertilizer dose). According to the results, the highest green herbage yield and nutrient uptake values were observed in LEO-100 whereas N-based treatments significantly decreased yield and nutrient uptake of silage maize. The use of organic materials as a combination with inorganic fertilizer in silage maize cultivation is highly beneficial for sustainable forage production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号