首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
林业   13篇
农学   1篇
  11篇
综合类   6篇
畜牧兽医   4篇
园艺   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1995年   1篇
  1994年   2篇
  1987年   1篇
  1986年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
A field calibration experiment was carried out on salt‐affected clayey soil in Syria, to compare the sensitivity to soil electrical conductivity (ECe), and bulk density (ρb) of two instruments for estimating soil moisture: the neutron probe (NP) and the Diviner 2000 capacitance probe (CP). The results showed that the values of the correlation coefficient of the calibration were decreased when the ECe and ρb values increased; this decrease was more pronounced for the Diviner 2000, indicating that it was more sensitive to ρb and ECe than the NP. When only scaled frequency was used in the fitted equation, the Diviner 2000 in wet soil underestimated soil water content significantly at all depths, but especially in the top layer, by up to 0.09 cm3/cm3 compared with gravimetric determinations. However, in dry soil, the Diviner 2000 overestimated the volumetric water content by up to 0.05 cm3/cm3 in the top 15 cm, and by 0.03 cm3/cm3 at 30‐45 cm depth. The performance of the neutron probe was better overall; using a factory calibration curve no significant differences were observed between NP estimates and the gravimetric values. Including both ρb and ECe in the calibration equations improved the fits, although the regression coefficient (R2) for the Diviner 2000 remained low.  相似文献   
2.
Kull O  Tulva I 《Tree physiology》2002,22(15-16):1167-1175
We investigated shoot growth patterns and their relationship to the canopy radiation environment and the distribution of leaf photosynthetic production in a 27-m-tall stand of light-demanding Populus tremula L. and shade-tolerant Tilia cordata Mill. The species formed two distinct layers in the leaf canopy and showed different responses in branch architecture to the canopy light gradient. In P. tremula, shoot bifurcation decreased rapidly with decreasing light, and leaf display allowed capture of multidirectional light. In contrast, leaf display in T. cordata was limited to efficient interception of unidirectional light, and shoot growth and branching pattern facilitated relatively rapid expansion into potentially unoccupied space even in the low light of the lower canopy. At the canopy level, T. cordata had higher photosynthetic light-use efficiency than P. tremula, whereas P. tremula had higher nitrogen-use efficiency than T. cordata. However, at the individual leaf level, both species had similar efficiencies under comparable light conditions. Production of new leaf area in the canopy followed the pattern of photosynthetic production. However, the species differed substantially in extension growth and space-filling strategy. Light-demanding P. tremula expanded into new space with a few long shoots, with shoot length strongly dependent on photosynthetic photon flux density (PPFD). Production of new leaf area and extension growth were largely uncoupled in this species because short shoots, which do not contribute to extension growth, produced many new leaves. Thus, in P. tremula, the growth pattern was strongly directed toward the top of the canopy. In contrast, in shade-tolerant T. cordata, shoot growth was weakly related to PPFD and more was invested in long shoot growth on a leaf area basis compared with P. tremula. However, this extension growth was not directed and may serve as a passive means of avoiding self-shading. This study supports the hypothesis that, for a particular species, allocation patterns and crown architecture contribute as much to shade tolerance as leaf-level photosynthetic acclimation.  相似文献   
3.
Foliar biomass investment in support and assimilative compartments was studied in four temperate deciduous tree species along a natural light gradient across the canopy. The species ranked according to shade tolerance as Betula pendula Roth. < Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. Long-term light conditions at sampling locations were characterized as seasonal mean integrated quantum flux density (Q(int), mol m(-2) day(-1)) estimated by a method combining hemispherical photography and light measurements with quantum sensors. Leaf morphology was altered by Q(int) in all species. Both lamina and petiole dry mass per lamina area (LMA and PMA, respectively) increased with increasing Q(int). Shade-tolerant species had lower LMA at low Q(int) than shade-intolerant species; however, PMA was not related to shade tolerance. Across species, the ratio of petiole dry mass to lamina dry mass (PMR) varied from 0.07 to 0.21. It was independent of Q(int) in the simple-leaved species, but decreased with increasing Q(int) in the compound-leaved F. excelsior, which also had the largest foliar biomass investment in petioles. Differences in leaf mass and area, ranging over four orders of magnitude, provided an explanation for the interspecific variability in PMR. Species with large leaves also had greater biomass investments in foliar support than species with smaller leaves. This relationship was similar for both simple- and compound-leaved species. There was a negative relationship between PMR and petiole N concentration, suggesting that petioles had greater carbon assimilation rates and paid back a larger fraction of their construction cost in species with low PMR than in species with high PMR. This was probably the result of a negative relationship between PMR and petiole surface to volume ratio. Nevertheless, petioles had lower concentrations of mineral nutrients than laminas. Across species, the ratio of petiole N to lamina N varied from only 3 to 6%, demonstrating that petiole costs are less in terms of nutrients than in terms of total biomass, and that the petiole contribution to carbon assimilation is disproportionately lower than that of the lamina contribution.  相似文献   
4.
甘蓝型油菜DH系在不同生态区SPAD值的差异分析   总被引:2,自引:0,他引:2  
以甘蓝型油菜纯合双单倍体(DH)为材料,研究不同生态环境下油菜叶绿素SPAD值的变化状况,揭示叶绿素含量遗传表现规律,创制更高叶绿素含量种质资源,以期为油菜高光效育种奠定方法和理论基础。选取了170份甘蓝型油菜DH系,连续3年分别种植在冬油菜区(陕西大荔)和春油菜区(甘肃张掖)。结果表明:无论是不同遗传背景的DH系、还是同一亲本下的不同DH系材料,油菜DH系叶绿素含量在田间既表现出遗传稳定性,又容易受到外界环境影响,即在相似的生态条件下,同一区域即便不同年份的各DH系材料,叶绿素SPAD值的表现基本一致,但在不同生态区,油菜DH系的SPAD值差异很大。通过对油菜DH系亲本和DH系叶绿素SPAD值频数分布分析,叶绿素含量连续3年在2个生态环境具有广泛的连续分布,并且服从正态或者近似于正态分布,以及超亲分离的特点。这些都表明油菜叶绿素含量是一个典型的数量性状,受到多对基因的控制。  相似文献   
5.
Leaf cuticular surface absorption of O3 was investigated inBetula pendula Roth leaves which have no stomata on their adaxial surface. A two-component absorption model was assumed to approximate experimental data. The first component, having second order kinetics, decreased exponentially during ozonation, the second or residual component remained constant. The residual ozone conductance of the leaf cuticle was about an order of magnitude higher than the leaf cuticular conductance to water vapour. It is concluded that leaf surface absorption must be taken into consideration during short term experiments and in those with low ozone concentrations.  相似文献   
6.
The behavior of dissolved (<0.45 μm) inorganic compounds during infiltration of river water into the adjacent aquifer (unconsolidated glacio-fluvial sediments) was investigated at the Glatt River, Switzerland, field site. The water was sampled in the river and from wells at distances of 2.5, 5, 13, and 110 m along an estimated groundwater flow line. Sodium, K, Ca, Mg, Sr, Cr, Cu, Zn, Cd, Pb, Cl?, NO3 ?, SO4 2?, and PO4 3? were measured using AAS, NAA, and ion chromatography. Groundwater concentrations of these species are mainly determined by the concentrations in the river. However, the concentrations of NO3 ?, (PO4 3?), Cr, Cu, Zn, Cd, and Pb are also subject to seasonal variations in the near infiltration field (≤ 5 m). These variations are probably triggered by temperature dependent biological processes which influence parameters such as pH, redox potential and complexing agents. The redox potential controls the chemical behavior of Mn, which influences the solubility of heavy metal compounds. The extent of inorganic pollution in the investigated system is still much below drinking water standards, but for Cd, reaches the toxicity limit for aquatic organisms.  相似文献   
7.

Key message

The purpose of this report is to increase the transparency of applications of the CBM-CFS3 model by climate-related policy-makers and researchers. The report provides explicit information on the parametrization of a new Archive Index Database used with this model to simulate forest carbon dynamics in 26 EU countries. The database can be accessed at https://data.europa.eu/89h/jrc-cbm-eu-aidb , primary metadata are available in Kull et al. (2017), and additional metadata are available at https://metadata-afs.nancy.inra.fr/geonetwork/srv/fre/catalog.search#/metadata/df48155b-973f-4169-a722-100bb6bfc76c .The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) has been adapted, tested, and applied to forests of 26 EU countries over the last 7 years for EU policy making and scientific research. The overall purpose of this exercise is to increase the transparency of how the EU Archive Index Database (EU-AIDB) was parameterized while supporting both the policy making and research communities interested in applying the CBM-CFS3 with ecological parameters specific to the EU context. In addition to preparing model input data reflecting various management and disturbance scenarios for CBM-CFS3 projects, an essential step was to update the original AIDB with information specific to the EU context and create an EU-AIDB. The AIDB is the Microsoft Access database behind the CBM-CFS3 that stores default ecological information and parameters pertaining to the forest ecosystems of a country, among other functions. The EU-AIDB incorporates 1034 spatial units resulting from the intersection of 204 European administrative regions and ecological boundaries representing 35 climatic units. It also contains updated parameters for 192 of the main tree species reported by the National Forest Inventories of each EU country. The release of this database allows CBM-33 CFS3 users in the EU to apply European administrative and ecological units and tree species in forest carbon modeling projects.
  相似文献   
8.
The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling. Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the model were similar to the error in the reference methods.  相似文献   
9.
Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves.  相似文献   
10.
National and International Red Lists and Legal Acts specify species with conservation needs, mainly on the basis of personal experiences. For effective conservation we need scientifically justified prioritization and grouping of these species. We propose a new combined approach where species are grouped according to the similar activities needed for their conservation. We used the national list of vascular plant species with conservation need for Estonia (301 species), and linked these species to eight qualitative conservation characteristics, four reflecting natural causes of rarity (restricted global distribution; restricted local distribution within a country; always small populations; very rare habitat type), and four connected with nature management (species needing the management of semi-natural grasslands; species needing local disturbances like forest fires; species needing traditional extensive agriculture; species which may be threatened by collecting). Only one positive association occurred among the characteristics - between restricted local distribution and small size of populations. Thus, natural causes of rarity and management aspects are not overlapping, and both should be used in conservation activities. Species grouping by different conservation characteristics allows one to focus on species groups with similar conservation needs instead of individual species. Prioritization of species with conservation needs can be based on the number of conservation characteristics that are associated with a particular species. Our prioritization did not correlate with the categories of the national Red Data Book, but a positive association was found with legal protection categories. The legislation, however, covers only the natural causes of rarity. We propose a new combined approach for plant species’ conservation planning that starts by considering human induced rarity and progresses through to natural rarity causes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号