首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  3篇
园艺   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Summary

Clonal selection is an important method for varietal improvement in grapevine. Ampelometric and morphological markers fail to differentiate clones from their parent genotype. Molecular markers offer the opportunity to identify the clonal material. In this study, five clones of the grapevine variety ‘Kishmish Chernyi’ were analysed using microsatellite (SSR) and AFLP markers. These clones differed significantly in their bunch characteristics including berry size, shape, and colour. Microsatellite (SSR) analysis using 24 primers could not distinguish between these clones. The allele profiles of the clones and the parent variety were identical. AFLP analysis using 13 primer pair combinations yielded 592 markers ranging in size from 50 – 500 bp. Of these, 79 markers (13%) were polymorphic. The majority of the polymorphic markers (75/79) were detected in the clone ‘Sharad Seedless’. Three AFLP primer combinations detected unique markers in three clones which could be useful for future identification.  相似文献   
2.
Rising carbon dioxide (CO2) concentration causes fertilization effects resulting in enhanced crop biomass and yields and thus likely enhances nutrient demand of plants. Hence, this field study was carried out to investigate the effects of elevated CO2 and N on biomass yield, nutrient partitioning, and uptake of major nutrients by soybean (Glycine max L.) using open‐top chambers (OTCs) of 4 m × 4 m size. Soybean was grown in OTCs under two CO2 [ambient and elevated (535 ± 36.9 mg L?1)] and four N levels during July to October 2016. The four N levels were N0, N50, N100, and N150 referring to 0, 50, 100, and 150% recommended dose of N. Both CO2 and N significantly affected biomass and grain yield, though the interaction was non‐significant. CO2 enrichment produced 30–65% higher biomass and 26–59% higher grain yield under various N levels. As compared to the optimum N application (N100), the CO2‐mediated increment in biomass yield decreased with either lower or higher N application, with the response being lowest at N150. As compared to ambient concentration, elevated CO2 resulted in significant reduction of seed P concentration at all N application levels but at N150, an opposite trend was observed. The decrease in seed P was maximum at N0 and N50 (7–9%) and by 3% at N100, whereas there was a gain of 7.5% at N150. The seed N and K concentrations were not affected either by CO2 or N application. Total N, P, and K uptake at harvest were significantly affected by CO2 and N, but not by CO2 × N interaction. Elevated CO2 resulted higher uptake of N by 18–61%, P by 23–62%, and K by 22–62% under various N treatments.  相似文献   
3.
Genetic Resources and Crop Evolution - Dill (Anethum graveolense L.) is one of the neglected and minor spice crop, with low genetic variability. The genetic improvement of dill is being limited due...  相似文献   
4.
Conservation crop residue management increases soil organic carbon (SOC) storage, nutrient cycling and availability and improves soil quality. This study was conducted to evaluate the amount of residue biomass, residue carbon to nitrogen (C:N) ratio, residue carbon (C) and nitrogen (N), and residue N fertilizer deficit (supplemental N fertilizer requirement) from crop residue decomposition in long-term no-till production. Aboveground aged and fresh residues were collected in spring 2011 and fall 2012, respectively. Results showed slightly greater residue dry matter weight in aged residue than fresh residue. C:N ratios were wider in fresh residue than the aged residue. Both aged and fresh residue also showed wider C:N ratio in the corn (Zea mays L.)-soybean (Glycine max L.) rotation (66.6 and 64.4, respectively) and narrower C:N ratio in the spring wheat (Triticum aestivum L.)-winter wheat (Triticum aestivum L.)-alfalfa (Medicago sativa L.)-alfalfa-corn (Zea mays L.)-soybean (Glycine max L.) (45.6 and 35.7, respectively). Individual fresh crop residues showed narrower C:N ratios for legume and cover crops than non-legume crops. Analysis of potential supplemental N fertilizer requirements showed greater potential N requirement for the fresh residue than the aged residue.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号