首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  4篇
综合类   11篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2018年   4篇
  2016年   2篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
1.
本研究通过盆栽试验,旨在研究炭基有机肥对土壤理化性质和番茄生长发育的影响,为番茄设施生产中化肥减量增效提供依据和技术支持。供试番茄品种为浙粉715,有机肥为水稻秸秆与猪粪堆肥而成,以凹凸棒土-稻壳炭复合材料、稻壳炭、污泥炭为来源,加有机肥混合制成炭基有机肥。试验设置5个处理:不施基肥(CK)、常规施肥(CF)、矿物型炭基有机肥(CT1)、稻壳炭基有机肥(CT2)、污泥炭基有机肥(CT3),研究3种炭基有机肥氮替代60%化肥氮对番茄生长、养分含量、品质和土壤质量的影响。结果表明:炭基有机肥可显著提高土壤理化性质,增加酶活性,促进叶绿素含量的增加,提高番茄产量和品质。与CF处理相比,CT1处理显著提高土壤的pH、全氮和速效钾含量,显著增加土壤脲酶和过氧化氢酶活性,CT2处理显著提高土壤的全氮和有机质含量,增加了土壤酸性磷酸酶和蔗糖酶活性。与CF处理相比,CT2处理更有利于叶绿素的积累,且番茄产量增加14.9%,氮吸收量也显著提高,CT2、CT3处理番茄的VC含量显著提高16.5%和19.5%,可溶性糖含量显著增加14.7%和12.1%,硝酸盐含量显著下降36.9%和34.9%,CT1、CT2处理番茄可溶性固形物含量显著提高14.8%和25.9%。研究表明,CT2稻壳炭基有机肥更适宜改良土壤理化性质,增加番茄叶绿素含量,提高氮吸收量,提升番茄产量和品质。  相似文献   
2.
铁改性稻壳生物炭对铵态氮的吸附效果研究   总被引:2,自引:0,他引:2  
[目的]研究稻壳生物炭和3种铁改性稻壳生物炭对铵态氮的吸附特性,为其作为添加剂进行炭基肥料的开发提供参考.[方法]以稻壳为原料,在500℃无氧条件下热解制备稻壳生物炭(RBC),并采用3种工艺制备铁改性稻壳生物炭(FDRBC、FWRBC和FWBC).利用比表面积测定仪(BET)和扫描电镜(SEM)、X射线衍射(XRD)...  相似文献   
3.
为系统研究不同炭化温度条件下猪粪水热炭化规律,本研究以猪粪和发酵猪粪为供试材料,采用水热炭化工艺在系列温度条件下(180、240℃和300℃)制备生物炭,对其元素含量、热稳定性、孔隙结构、表面官能团等理化性质进行表征,并对水热炭化残液进行成分分析。结果表明,猪粪生物炭和发酵猪粪生物炭均具有发达的孔隙结构、丰富的表面官能团等优良特性,其H/C原子比和热失重率均随炭化温度升高而减小,表明热化学稳定性随炭化温度升高而增强。水热炭化残液的成分主要包括有机酸、醇、酯、醛、吡嗪、苯酚等物质,较高炭化温度条件下残液中化合物种类更丰富。与猪粪相比,发酵猪粪水热炭化残液的成分仍然以酚、烯、酮类物质为主,但呋喃、吡啶、吡嗪类毒性化合物消失。研究表明,发酵猪粪在300℃条件下水热炭化的残液用作液态肥料的安全性更高,在资源化利用方面更具优势。  相似文献   
4.
为探讨猪粪炭对茶园土壤的改良作用,通过35 d的好气密闭培养实验,研究猪粪炭施加对茶园土壤的硝化过程、温室气体N2O排放及土壤微生物酶活性的影响。结果表明:施加猪粪炭可以改善茶园土壤的酸性环境,显著提高土壤pH,使其更适宜茶树的生长;茶树是典型的喜铵厌硝植物,较高的硝铵比不利于茶树的生长,低、中量猪粪炭施加显著增加土壤pH,并未促进茶园土壤的硝化作用,且显著降低土壤N2O累积排放量高达41.2%~58.7%;高量猪粪炭施加显著增加茶园土壤净硝化速率,降低N2O累积排放量62.4%;猪粪炭施加显著提高土壤FDA水解酶、脲酶及脱氢酶活性。研究表明,适量猪粪炭的添加可以改善茶园土壤的酸碱环境和微生物活性,促进土壤的生物化学反应和土壤养分元素的循环,从而提高土壤养分的可利用性和土壤质量。  相似文献   
5.
羊栖菜生物炭对镉污染土壤性质及镉形态的影响   总被引:1,自引:4,他引:1  
为了研究生物炭对实际镉(Cd)污染土壤理化性质和Cd化学形态的影响,首先以海洋生物质(羊栖菜)、农林废弃物(水稻秸秆、山核桃壳)为原料制备了三种生物炭,并比较了三种生物炭对水溶液中Cd的吸附效果,从而优选出对Cd吸附最佳的生物炭。通过在Cd污染的土壤中施用不同用量的优选生物炭,测定污染土壤基本理化性质和Cd化学形态的变化,初步探讨了生物炭对实际Cd污染土壤理化性质和土壤Cd污染的钝化效果。结果表明,三种生物炭中羊栖菜炭对重金属Cd的吸附效果最佳。污染土壤添加羊栖菜炭后可以明显提高污染土壤p H、有效磷、速效钾、全氮和有机质,且随添加量增加而幅度增大。不同量的羊栖菜炭的施入均有效降低了污染土壤有效态Cd含量,使得土壤重金属Cd由交换态向碳酸盐结合态、铁锰氧化物结合态、有机结合态和残渣态转化。综上所述,羊栖菜炭显著降低了土壤重金属Cd的生物有效性和生态毒性,从而显著降低重金属Cd的危害。  相似文献   
6.
为探究生物炭可溶性组分与土壤矿物的交互作用,进而从矿物角度揭示生物炭在土壤中的稳定机制,以水稻秸秆为生物质原料制备不同炭化温度的生物炭(RS300、RS500和RS700),选用高岭石、蒙脱石和伊利石3种土壤矿物,开展土壤矿物与生物炭可溶性组分的吸附结合实验。结果表明:随生物炭可溶性组分碳浓度的升高,土壤矿物对其吸附量逐渐增加,3种土壤矿物的吸附量顺序总体为蒙脱石>伊利石>高岭石,这与土壤矿物的自身结构直接相关。高岭石、蒙脱石对生物炭可溶性组分的结合机制以范德华力为主,其贡献比例分别为3.4%~87.0%和32.0%~82.0%;而伊利石与RS300可溶性组分的吸附结合作用以Ca2+架桥为主(贡献比例为60.4%~70.6%),与RS500和RS700可溶性组分的结合以范德华力为主(贡献比例分别为18.7%~65.0%和53.0%~67.6%)。经综合对比分析,RS500通过与蒙脱石的交互结合,最大程度上抑制了可溶性组分的溶解,有利于更好地发挥生物炭的固碳减排优势。  相似文献   
7.
为摸清浙江省梨生产状况,本研究选择省内梨优势主产区具有代表性的12个梨园开展土壤质量采样调查,对土壤样品的理化性质和重金属含量进行检测分析,旨在为该地区实现梨产业提质增效和绿色发展提供依据。结果表明,调查梨园土壤表层0~<20 cm pH平均值为5.24,20~40 cm土壤pH平均值为5.31,土壤总体呈酸性。有机质、总氮、有效磷、速效钾的含量总体适宜,但不同地区采样点之间的差异较大,其中有机质、总氮、有效磷的含量均呈现武义采样点较高,慈溪采样点较低的结果;速效钾的含量呈现嘉兴采样点较高,上虞采样点较低的结果。此外,所有调查的梨园土壤重金属Cu、Zn、Pb、Cr含量总体上均符合土壤环境质量二级标准,而东阳采样点存在重金属Cd含量超标的问题,需要采取一定措施进行土壤重金属修复。  相似文献   
8.
以稻壳炭与氮磷钾肥及枯草芽孢杆菌孢子粉复合,采用掺混法、吸附法、混合造粒法3种工艺,设置10%、20%和30%三种稻壳炭添加水平,小试制备了9个炭基微生物肥料样品,并对其进行电镜扫描及元素含量、pH值、总养分、有效活菌数、缓释效果等的测定与分析。结果表明,采用混合造粒法制备的炭基微生物肥料负载氮磷钾肥和微生物孢子粉最多,其次是吸附法,掺混法最少。9个炭基微生物肥料样品中各元素含量比较丰富,工艺相同时,随着稻壳炭添加量的增加,C、N含量增加而H含量减少。9个炭基微生物肥料的pH值均呈酸性或接近中性,总养分含量均达到了复合肥国家标准的要求。枯草芽孢杆菌孢子粉与稻壳炭及氮磷钾肥复合60 d后,有效活菌数为3.4×105~7.0×105 g-1,同种工艺制备的炭基微生物肥料的有效活菌数随稻壳炭添加量的增加而增加。炭基微生物肥料的7 d氮素累积水溶出实验表明,9个肥料样品均有一定的缓释功能,同种工艺制备的炭基微生物肥料的氮素累积释放率随稻壳炭添加量的增加而降低。稻壳炭添加量相同时,缓释效果混合造粒法>吸附法>掺混法。综上,添加30%的稻壳炭、采用混合造粒工艺制备的炭基微生物肥料具有最优的性质,可进一步验证其效果并推广应用。  相似文献   
9.
本研究以竹片、山核桃壳、水稻及油菜秸秆等4种生物质为原料,通过热重分析研究各生物质材料性质与热解特性及生物炭产率之间的关系;并在300~700 ℃下热解6 h制备生物炭,分析生物炭的元素组成及官能团结构。结果表明,在低温段(300~400 ℃),生物质材料中的纤维素、木质素等组分对生物炭产率影响较明显,木质素含量高的材料产率较高;而400 ℃以上则是灰分含量对生物炭产率影响较大,水稻及油菜秸秆由于灰分含量高,其400 ℃以上的生物炭产率高于竹片及山核桃壳。随着炭化温度的升高,生物炭灰分含量增加,无灰基的碳含量增大,稳定性增强;仅水稻秸秆炭由于灰分含量较高,在高温(500~700 ℃)条件下仍有部分含氧官能团存在。综上,生物炭在一定温度下的产率取决于生物质材料来源,而生物炭的稳定性则主要由炭化温度决定,且温度越高,性质越稳定。  相似文献   
10.
不同生物炭对氮的吸附性能   总被引:7,自引:3,他引:7  
为探究不同类型生物炭对氮的吸附性能,寻求最佳的氮素吸附材料,本文选择稻壳炭、山核桃壳炭和竹炭作为吸附剂,开展不同pH环境、反应时间、初始浓度及生物炭添加量条件下的吸附实验,研究生物炭对硝酸铵溶液中氮的最佳吸附条件,并对结果进行等温吸附拟合与吸附动力学研究。结果表明:3种生物炭对硝酸铵溶液中的氮均有一定的吸附效果,且pH环境、反应时间、初始浓度及生物炭添加量均影响生物炭对氮的吸附量。生物炭添加量为0.05 g时,在pH环境为9、吸附时间为3 h、初始浓度为100 mg·L-1的条件下,平衡吸附量达到最大,稻壳炭、山核桃壳炭和竹炭在此条件下的最大吸附量分别为23.79、13.00 mg·g~(-1)和17.60 mg·g~(-1),表明稻壳炭对氮的吸附效果最佳;Langmuir方程能更好地拟合3种生物炭对氮的等温吸附过程,表明生物炭对氮的吸附主要是单分子层吸附;准二级动力学模型能更好地描述3种生物炭吸附氮的动力学过程,表明生物炭对氮的吸附为化学吸附。综上说明,稻壳炭在最佳吸附条件下可吸附较多氮素,有望作为一种良好的吸附剂应用于土壤和水体氮素污染治理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号