首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
农学   1篇
综合类   12篇
园艺   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有14条查询结果,搜索用时 16 毫秒
1.
Climate impact of increasing atmospheric carbon dioxide   总被引:2,自引:0,他引:2  
The global temperature rose by 0.2 degrees C between the middle 1960's and 1980, yielding a warming of 0.4 degrees C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage.  相似文献   
2.
Analysis of the long-term Global Aerosol Climatology Project data set reveals a likely decrease of the global optical thickness of tropospheric aerosols by as much as 0.03 during the period from 1991 to 2005. This recent trend mirrors the concurrent global increase in solar radiation fluxes at Earth's surface and may have contributed to recent changes in surface climate.  相似文献   
3.
Nitrous oxide, methane, ammonia, and a number of other trace constituents in the earth's atmosphere have infrared absorption bands in the spectral region 7 to 14 microm and contribute to the atmospheric greenhouse effect. The concentrations of these trace gases may undergo substantial changes because of man's activities. Extensive use of chemical fertilizers and combustion of fossil fuels may perturb the nitrogen cycle, leading to increases in atmospheric N(2)O, and the same perturbing processes may increase the amounts of atmospheric CH(4) and NH(3). We use a one-dimensional radiative-convective model for the atmospheric thermal structure to compute the change in the surface temperature of the earth for large assumed increases in the trace gas concentrations; doubling the N(2)O, CH(4), and NH(3) concentrations is found to cause additive increases in the surface temperature of 0.7 degrees , 0.3 degrees , and 0.1 degrees K, respectively. These systematic effects on the earth's radiation budget would have substantial climatic significance. It is therefore important that the abundances of these trace gases be accurately monitored to determine the actual trends of their concentrations.  相似文献   
4.
The Mount Agung volcanic eruption in 1963 provides the best-documented global radiative perturbation to the earth's atmosphere currently available. Data on stratospheric aerosols produced by this eruption have been used as input to a model for the atmospheric thermal structure. The computed magnitude, sign, and phase lag of the temperature changes in both the stratosphere and the troposphere are in good agreement with observations, providing evidence that the climatic response to a global radiative perturbation is significant, as well as support for the use of theoretical models to predict climatic effects.  相似文献   
5.
Global warming caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.  相似文献   
6.
The first polarization measurements of the orbiter cloud photopolarimeter have detected a planet-wide layer of submicrometer aerosols of substantial visible optical thickness, of the order of 0.05 to 0.1, in the lower stratosphere well above the main visible sulfuric acid cloud layer. Early images show a number of features observed by Mariner 10 in 1974, including planetary scale markings that propagate around the planet in the retrograde sense at roughly 100 meters per second and bright- and dark-rimmed cells suggesting convective activity at low latitudes. The polar regions are covered by bright clouds down to latitudes aproximately 50 degrees, with both caps significantly brighter (relative to low latitudes) than the south polar cloud observed by Mariner 10. The cellular features, often organized into clusters with large horizontal scale, exist also at mid-latitudes, and include at least one case in which a cell cuts across the edge of the bright polar cloud of the northern hemisphere.  相似文献   
7.
Three previously described highly polymorphic SSR (microsatellite) primer pairs were tested on 126 sweet cherry (Prunus avium L.) accessions to adapt a fast, reliable method for preliminary screening of sweet cherry germplasm collections and to compare two sweet cherry germplasm collections: at the Latvia State Institute of Fruit-Growing, Dobele (LIFG-Dobele) and at the Division of Horticultural Genetics and Plant Breeding at Balsgård, Department of Crop Sciences, Swedish University of Agricultural Sciences (SLU-Balsgård). The SSR loci were highly polymorphic with 4–10 different alleles and 5–18 genotypes. Heterozygosity values ranged from 0.431 to 0.809, gene diversity (PIC) values ranged from 0.400 to 0.753, and the discriminating power of each locus varied from 0.631 to 0.894. The combined discriminating power of all loci was highly effective (0.996). Sixteen identical accession groups with the same allele profile were discovered in both collections. This study demonstrated that SSR fingerprinting with the three primer pairs tested, can be used for preliminary characterization of sweet cherry germplasm collections.  相似文献   
8.
The factors that determine climate response times were investigated with simple models and scaling statements. The response times are particularly sensitive to (i) the amount that the climate response is amplified by feedbacks and (ii) the representation of ocean mixing. If equilibrium climate sensitivity is 3 degrees C or greater for a doubling of the carbon dioxide concentration, then most of the expected warming attributable to trace gases added to the atmosphere by man probably has not yet occurred. This yet to be realized warming calls into question a policy of "wait and see" regarding the issue of how to deal with increasing atmospheric carbon dioxide and other trace gases.  相似文献   
9.
Venera 8 measurements of solar illumination within the atmnosphere of Venus are quantitatively analyzed by using a multilayer model atmosphere. The analysis shows that there are at least three different scattering layers it the atmosphere of Venus and the total cloud optical thickness is [unknown] 10. However, because of the nature of the observations it is not possible to determine the vertical distributiont of absorbed solar energy, which would reveal the drive for the atmospheric dynamics and the strength of the greenhouse effect. Future spacecraft observations should be designed to (i) measure both upward and downward solar fluxes, (ii) include measurements of the highest clold lavers. and (iii) employ narrow-band and broad-banzd sensors.  相似文献   
10.
Atmospheric CO2: principal control knob governing Earth's temperature   总被引:1,自引:0,他引:1  
Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号