首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
林业   7篇
农学   4篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Summary Post-anthesis chemical desiccation of wheat (Triticum aestivum L.) plants in the field eliminates transtent photosynthesis by killing all green tissues, thus revealing the plant's capacity for grain filling from stored stem reserves, as the case is for post-anthesis stress such as drought or leaf diseases. This study was conducted to investigate whether mass selection for large kernels under chemical desiccation would lead to the improve ment of grain filling in the absence of transient photosynthesis.Six crosses of common spring wheat were subjected to three cycles of mass selection from F2 through F1 when selection was performed for large kernels by sieving grains from plants that were erther chemically desiccated after anthesis, or not (controls). The resulting 36 bulks (six crosses by three selection cycles by two selection environments) were compared with their respective F2 base populations, when tested with and without chemical desiccation.Selection for large kernels under potential conditions (without chemical desiccation) did not improve kernel weight under potnetial conditions, evidently because these materials were lacking in genetic variation for kernel weight under potential conditions. In four of the crosses, 3rd cycle selection for large kernels under potential conditions decreased kernel weight under chemical desiccation. On the other hand, selection for large kernels under chemical desiccation was effective in improving kernel weight and test weight under chemical desiccation, depending on the cross and the selection cycle, with no genetic shift in mean days to heading or mean plant height. Selection for large kernels under chemical desiccation was also effective in some cases in increasing kernel weight under potential conditions. The results are interpreted to show that selection under potential conditions and under chemical desiccation operate on two different sources for grain filling, namely transient photosynthesis and stem reserve utilization, respectively. In order to expose genetic variability for stem reserve utilization to selection pressure, transient photosynthesis must be eliminated, as done by chemical desiccation in this study.  相似文献   
2.
Summary Diverse landraces of wheat, collected from the semi-arid (150 to 250 mm of total annual rainfall) Northern Negev desert in Israel were considered as a potential genetic resource of drought resistance for wheat breeding. These materials were therefore evaluated for their reponses to drought stress in agronomical and physiological terms. Up to 68 landraces, comprising of Triticum durum, T. aestivum, and T. compactum were tested in two field drought environments, in one favourable field environment, under post-anthesis chemical plant desiccation which revealed the capacity for grain filling from mobilized stem reserves, under a controlled drought stress in a rainout shelter and in the growth chamber under polyethylene glycol (PEG)-induced water stress. Biomass, grain yield and its components, harvest index, plant phenology, canopy temperatures, kernel weight loss by chemical plant desiccation, growth reduction by PEG-induced drought stress and osmotic adjustment were evaluated in the various experiments.Landraces varied significantly for all parameters of drought response as measured in the different experiments, which was in accordance to their documented large morphological diversity. Variation in grain yield among landraces under an increasing drought stress after tillering was largely affected by spike number per unit area. Kernel weight contributed very little to yield variation among landraces under stress, probably because these tall (average of 131 cm) landraces generally excelled in their capacity to support kernel growth by stem reserve mobilization under stress. Yield under stress was reduced with a longer growth duration of landraces only under early planting but not under late planting. Landraces were generally late flowering but they were still considered well adapted phenologically to their native region where they were always planted late.Landraces differed significantly in canopy temperature under drought stress. Canopy temperature under stress in the rainout shelter was negatively correlated across landraces with grain yield (r=0.67**) and biomass (r=0.64**) under stress. Canopy temperature under stress in the rainout shelter was also positively correlated across landraces (r=0.50**) with canopy temperature in one stress field environment. Osmotic adjustment in PEG-stressed plants was negatively correlated (r=–0.60**) with percent growth reduction by PEG-induced water stress. It was not correlated with yield under stress in any of the experiments. In terms of yield under stress, canopy temperatures and stem reserve utilization for grain filling, the most drought resistant landrace was the Juljuli population of T.durum.  相似文献   
3.
An evaluation of seed and seedling drought tolerance screening tests in wheat   总被引:10,自引:0,他引:10  
A. Blum  Bebi Sinmena  O. Ziv 《Euphytica》1980,29(3):727-736
Summary A series of experiments was performed in order to evaluate the significance of seed germination and seedling growth in osmotic media as screening methods for drought tolerance.Ten spring wheat (Triticum aestivum L. em Thell.) and one durum wheat (Triticum durum Desf.) were tested under controlled environments, using polyethylene glycol-6000 (PEG) solutions as the moisture stress inducing media.Tolerance in the rate of endosperm utilization, under stress, prior to the onset of germination varied among cultivars.Germination rate or injury to germination at various concentrations of PEG differed significantly among cultivars. Cultivar rating with respect to injury to germination changed with stress levels. Injury to germination did not correlate with endosperm utilization rate in PEG or in water.Germinating seedlings were tolerant to extreme desiccation up to the stage of emergence of the first leaf from the coleoptile.Growth of photosynthesizing seedlings was monitored as they were carried through an increasing concentration gradient of PEG solutions, ranging from –5.9 to –11.3 bars of water potential. Cultivars significantly differed in seedling growth tolerance to increasing levels of water stress. Seedling growth tolerance across cultivars was not correlated with their germination responses under srress.It is concluded that tolerance to water stress in growing seedlings can be screened for by using PEG-containing nutrient solutions. It can not be predicted from germination tests in osmotica.Work was done under a US-Israel Binational Science Foundation (BSF) Grant no. 1654/78.Contribution from Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 192-E, 1979 series.  相似文献   
4.
Correct knowledge of disturbance ecology is essential for understanding the characteristic behavior of forest ecosystems and for guiding appropriate management strategies. However, the role of natural disturbances in shaping European mountain forest ecosystems has not been adequately studied, possibly because of the perception that the development of most European forests is primarily shaped by human influences and/or fine-scale gap-phase dynamics.In the present study, we investigate the long-term disturbance history of old protected forest dominated by Norway spruce in the Parangalitsa Reserve, Bulgaria. We used aerial photo interpretation and dendroecological methods to reconstruct the history of wind, insect, and fire disturbances across a topographically complex landscape. Over the past 150 years wind has been the most important disturbance agent in this ecosystem and at least 18% of the forested area shows evidence of high-severity blowdowns. Windthrow patches ranged in size from <1 ha to >10 ha (minimum 0.11 ha, mean 0.16 ha, maximum 10 ha). Although small disturbances were much more frequent, few larger blowdowns accounted for most of the disturbed area. Pure coniferous and single-cohort coniferous forest patches were more affected by blowdowns than mixed coniferous-deciduous and multi-cohort coniferous forest patches. Although bark beetle (Ips typhographus) populations were large enough to cause mortality of some live trees, the populations did not grow to epidemic proportions during recent decades. Fire disturbance was of limited importance in the last 200 years and only two patches (4% of the study area) showed evidence of fire.The present research indicates that wind disturbances have been characteristic of these ecosystems at least over the past decades to centuries. Thus, blowdowns appear integral to the normal function and structure of the Picea-dominated mountain forests in the region and such events, in and of themselves, do not represent unhealthy forest conditions or environmental emergencies. Management strategies that aim to maintain these ecosystems within a natural range of variation should incorporate wind disturbances into the management strategy. The frequency and magnitude of future wind disturbances may be considered within the historical framework described in the current study to assess potential effects of climate change on altered disturbance regimes.  相似文献   
5.
A. Blum    Bebi  Sinmena  G. Golan  J. Mayer 《Plant Breeding》1987,99(3):226-233
Landraces of tetraploid and hexaploid wheat from the Northern Negev in Israel were evaluated over two years for their grain quality attributes. Twenty-one populations of tetraploid wheat (Triticum durum, represented by 56 accessions) and 8 populations of hexaploid wheat (T. aestivum and T. compactum, represented by 13 accessions) were compared with 3 and 4 modern improved Israeli cultivars of tetraploid and hexaploid reheat, respectively. This comparison allowed to estimate the progress made in the improvement of gram quality m present-day cultivars. Except for grain protein content in the hexaploids, significant variation was revealed among landraces in kernel weight, protein content (tetraploids), sedimentation, mixograph score and carotin content. The best modern cultivars were comparable to the best landraces in kernel weight and carotin content (tetraploids), indicating that modern wheat breeding maximized kernel weight and carotin content, as compared with the tested landraces. Gram protein content and/or quality was not maximized in modern cultivars and its improvement was deemed possible by introgression from the best landraces in this respect.  相似文献   
6.
A potential limitation of tree-ring based climate reconstructions is related to climate signal age effects (CSAE). CSAE may arise if the climatic response of young tree-rings differs from that of old tree-rings. This could mean that climatic signals become stronger (or weaker) with tree aging, or that the seasonality of signals or the sensitivity to a specific element (e.g., temperature, precipitation) changes over time. Such changes would affect the interpretation of dendroclimatic reconstructions, as the tree-rings included in these records are generally oldest at the end of a record (e.g., 21st century)—which is the time period generally used for calibration with instrumental data.We here addressed this concern by analyzing young and old Pinus cembra trees from three high elevation sites in the central European Alps. Core and disc samples were collected in pre-defined plots to allow for a representative analysis of tree ages with tree-ring width (TRW) measurement series categorized into age classes (i) >1880, (ii) 1880–1939, and (iii) 1940–2002. Notably we report on the signal of the very young category (iii) not yet described in literature, and thus allow estimation of climate response and signal strength characteristics during the first years of the trees’ lifespans.Comparison of age classes (i)–(iii) revealed differences in TRW coherence and size, but little change in climatic signal. CSAE are in the order of the differences recorded among high elevation sites—a conclusion that holds for inter-annual to decadal scale TRW variations at near-treeline Swiss stone pine. Such data are typically included in regional and larger-scale temperature reconstructions; thus, our results add confidence to long-term climate estimates integrating a range of tree-ring age classes. Other findings, such as the reaction wood in juvenile tree-rings, and sensitivity of the climate signal to sample replication, suggest that comparisons of young and old age classes, and separate calibration of these categories against instrumental climate data might further the estimation of long-term uncertainty changes in tree-ring based climate reconstructions.  相似文献   
7.
Adapting a growth equation to model tree regeneration in mountain forests   总被引:2,自引:0,他引:2  
Management and risk analysis of protection forests depend on a reliable estimation of regeneration processes and tree growth under different site conditions. While the growth of forest stands and thus the average growth of larger trees is well studied and published in yield tables as well as embodied in numerous simulation models, there is still a lack of information about the crucial initial stages of tree growth. Thus, we evaluated juvenile tree growth for different site conditions in the Swiss Alps and developed an approach to model both the early and later stages of growth based on the Bertalanffy equation. This equation is physiologically well founded and requires only two parameter estimates: a maximum tree height and a growth parameter. Data for the parameter estimation were available from studies of tree regeneration at a range of sites in Switzerland: growth patterns of larch (Larix decidua) were available from a high-elevation afforestation experiment. For spruce (Picea abies), data were obtained from a blowdown area in the Alps. The growth equation was fitted to the observed data and we found a good correlation of the fitted curves with the observed data. The parameter estimates were validated with independent data sets. The extrapolated growth curves, calculated with the estimated growth rates, correspond well to the validation data. Thus, it is possible to use the Bertalanffy equation to model both the early and later stages of growth. With this approach, we provide a basis for modelling the growth of juvenile and mature trees of different tree species in mountain forests of the European Alps.  相似文献   
8.
The two storms Vivian (1990) and Lothar (1999) left an area of roughly 9000 ha of fully damaged protection forests in Swiss mountain regions. Given this huge dimension, questions arose on how to manage these areas to keep the protection gap, i.e. the time period with reduced overall protection against natural hazards, short. Quantifications are presented for the stability of lying logs left in place, the frequency of post-disturbance mass movements, and the tree regeneration in windthrow areas. The average height above ground of unsalvaged lying logs decreased from 2.1 m shortly after disturbance to 0.8 m 20 years later. In the period 1990–2014, the number of avalanches in windthrow areas was markedly small, and annual rates of shallow landslides and debris flows in windthrow areas did not differ from rates in comparable undamaged forested areas. Regeneration density rarely exceeded 4000 stems ha?1 20 years post-windthrow at elevations above 1200–1500 m a.s.l. Mean height of tallest trees reached 5.6 m in areas that were cleared and 6.5 m in those left unsalvaged. Trees planted post-windthrow were 1.0–2.4 m taller than naturally regenerated ones. Practitioners rated the protective effect to be acceptable 24 years post-disturbance in only 5 out from 16 observed windthrow areas (31%), with planting trees as the main cause of success. We conclude that in protection forests the regeneration speed after disturbance rarely meets practitioner’s expectations in terms of both stem density and stand structure. However, leaving woody debris from wind disturbance in place proved to replace protective effects for an astonishingly long time. An intensive management with salvage logging, planting and even technical constructions seems therefore only inevitable on windthrown areas where risks seem too high based on hazard, damage potential and possible spread of bark beetles to nearby protection forests. A management alternative applicable to many other cases of windthrown protection forests is to plant trees between lying stems.  相似文献   
9.
10.
Avalanche disturbances are important processes in many subalpine forest ecosystems but have received relatively little research attention in comparison to other major types of disturbances. This paper presents a review of interactions between forests and snow avalanches in mountain ecosystems and discusses how avalanche disturbance regimes and associated management may change in the future. Avalanche disturbance regimes are two-way interactions in which forest structure and composition affect avalanches and avalanches, in turn, affect structure and composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号