首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
农学   5篇
植物保护   1篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Drought and salt tolerances are complex traits and controlled by multiple genes, environmental factors and their interactions. Drought and salt stresses can result in more than 50% yield loss in Upland cotton (Gossypium hirsutum L.). G. barbadense L. (the source of Pima cotton) carries desirable traits such as tolerance to abiotic and biotic stress along with high fiber quality. However, few studies have been reported on mapping quantitative trait loci (QTL) for abiotic stress tolerance using a permanent bi-parental population in multiple tests. The transfer of drought and salt tolerance from Pima to Upland cotton has been a challenge due to interspecific hybrid breakdown. This issue may be overcome by using introgression lines with genes transferred from Pima to Upland cotton. In this study, four replicated tests were conducted in the greenhouse each for drought and salt tolerance along with another test conducted in a field for drought tolerance using an Upland recombinant inbred line population of TM-1/NM24016 that has a stable introgression from Pima cotton. The objectives of the study were to investigate the genetic basis of drought and salt tolerance and to identify genetic markers associated with the abiotic stress tolerance. A total of 1004 polymorphic DNA marker loci including RGA-AFLP, SSR and GBS-SNP markers were used to construct a genetic map spanning 2221.28 cM. This population together with its two parents was evaluated for morphological, physiological, yield and fiber quality traits. The results showed that drought under greenhouse and field conditions and salt stress in the greenhouse reduced cotton plant growth at the seedling stage, and decreased lint yield and fiber quality traits in the field. A total of 165 QTL for salt and drought tolerance were detected on most of the cotton chromosomes, each explaining 5.98–21.43% of the phenotypic variation. Among these, common QTL for salt and drought tolerance were detected under both the greenhouse and field conditions. This study represents the first study to report consistent abiotic stress tolerance QTL from multiple tests in the greenhouse and the field that will be useful to understand the genetic basis of drought and salt tolerance and to breeding for abiotic stress tolerance using molecular marker-assisted selection in cotton.  相似文献   
2.
Verticillium wilt (VW, caused by Verticillium dahliae Kleb) is a destructive fungal soil-borne disease in Upland cotton (Gossypium hirsutum L.). High levels of VW resistance can be transferred into Upland from Pima cotton (G. barbadense L.) through interspecific introgression breeding. In this greenhouse study, VW resistance was evaluated in a multi-parent advanced generation inter-cross (MAGIC) introgressed line (IL) population, derived from a random mated Barbadense Upland population with five generations of intermating (called RMBUP-C4) between three Upland cotton cultivars and 18 CS-B Upland lines each carrying a pair of G. barbadense chromosome or arm in the TM-1 background. The objectives of this study were to, (1) evaluate VW resistance of 530 MAGIC ILs in the greenhouse; and (2) to identify lines with VW resistance in the MAGIC population based on a total of three replicated greenhouse tests. Approximately 8 plants for each line in each replicate were grown and screened for VW resistance using three parameters i.e., disease leaf severity rating, percentage defoliated leaves, and percentage infected plants, with a total of ~?25,190 plants evaluated. A correlation analysis indicated that the three parameters were significantly and positively correlated with one another in each test. The disease leaf severity rating was the best parameter to assess VW resistance due to its relatively low coefficient of variation and its higher resolution to differentiate resistant genotypes from susceptible ones. Of the 530 genotypes, 5 showed resistance to VW, namely, NMIL348, NMIL518, NMIL405, NMIL290, NMIL307 and had higher levels of resistance to VW with mean disease leaf severity ratings, percentage of defoliated leaves, and percentage of infected plants across three tests ranging from 0.58–1.46, 9.46–26.74, and 25–95%, respectively. These lines can be used as parental lines to improve VW resistance in cotton breeding programs.  相似文献   
3.
The cultivated tetraploid Gossypium barbadense L. cotton produces superior natural fibers for the textile industry in the world. However, the possibility in utilization of heterosis to further increase its lint yield has not been extensively explored. In this study, two commercial US Pima cotton cultivars and three exotic G. barbadense lines, together with all of their possible hybrids in F1 and F2 progeny without reciprocals, were tested for lint yield, yield components, and fiber quality traits in four environments in 2005–2007. With a few exceptions, genotype (G), environment (E), and G × E were all significant or highly significant for all the traits studied. General combining ability (GCA) variances for all the traits in both F1 and F2 were also significant, while specific combining ability (SCA) variances were detected only for lint yield, fiber length, and micronaire in both generations and boll weight in F1. GCA × E was also detected for lint percent, seed index, and fiber length in both F1 and F2, and boll weight in F1, but none of the traits had significant SCA × E. As a group, F1 and F2 out-yielded the parent group by 20–40% and 6–10%, respectively. Mid-parent heterosis (MPH) for lint yield in F1 was generally positive, ranging from ?4.7 to 116.4% with an average of 21.2–48.7%, while lint yield MPH in F2 ranged from ?23.3 to 69.4% with an average of 6.4–12.4%. However, useful heterosis in lint yield was only detected in the hybrid between the two US commercial cultivars Pima S-7 and DP 340. MPH for other traits was low or not detected. MPH in F2 was lower than that in F1 but they were generally positively correlated. The genetic distances (GD) of the parents (based on 467 polymorphic RAPD and AFLP markers) between the five parents was not consistently correlated with MPH and SCA of their hybrids and dominant effects for lint yield and other traits. However, significant and positive correlations between GD of parents and the performance of their hybrids were detected for lint yield, lint percentage, and lint index in both F1 and F2 in most of the tests. GD of parents was also correlated with their GCA and additive effects in lint yield, lint percent, lint index, micronaire, plant height, and elongation. The results suggest that the close correlation between GD and hybrid performance per se was mainly due to the existence of GCA and additive effects from parents.  相似文献   
4.
In January 2011, symptomatic chickpea and faba bean plants were observed in fields located in the Gezira state (Sudan). Faba bean plants showed yellowing and stunting, whereas chickpea plants presented yellowing, reddening and little leaves. The disease etiology was investigated using nested polymerase chain reaction (PCR) with phytoplasma-specific primers which amplify a fragment of the 16S rRNA gene. Sequencing and restriction fragment length polymorphism (RFLP) analyses revealed that the tested phytoplasmas belonged to the group 16SrII. Phylogenetic analyses of the 16S rRNA gene of the obtained sequences indicated that the chickpea and faba bean phytoplasmas from Sudan were more closely related to the phytoplasmas subgroup 16SrII-D. To our knowledge, this is the first report of phytoplasmas from the group 16SrII-D infecting chickpea in Sudan, and faba bean worldwide.  相似文献   
5.
6.
Water stress is one of the major abiotic stresses that adversely affect cotton production. Seedlings of 142 backcross inbred lines (BILs) derived from Pima cotton ‘Pima S‐7’ (Gossypium barbadense L.) × Upland cotton ‘Sure‐Grow 747’(G. hirsutum L.) were evaluated in two tests for plant height, fresh shoot weight and root weight under two treatments (5% PEG and water‐control conditions) using a hydroponic system in the greenhouse. The experiment in each test was a randomized complete block design with three replicates. The analysis of variance for the two tests detected significant genotypic variation in PEG‐induced stress tolerance within the BIL population and between the parents. Heritabilities were moderate to high and were higher under the control conditions than under the PEG treatment, and the three traits were also significantly and positively correlated. Based on a linkage map with 292 loci, six QTLs were detected including two for plant height, and two each for fresh shoot weight and root weight. This study represents the first report in using a permanent mapping population in genetic and linkage analysis of water stress tolerance in cotton.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号