首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  国内免费   13篇
林业   3篇
农学   9篇
基础科学   4篇
  4篇
综合类   21篇
农作物   12篇
水产渔业   3篇
畜牧兽医   2篇
园艺   2篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有60条查询结果,搜索用时 46 毫秒
1.
小麦赤霉病是世界性病害,严重危害小麦生产,已成为我国粮食安全的重大威胁.国内外在小麦赤霉病抗源筛选、抗病基因发掘与克隆及抗赤霉病育种等方面取得重大进展.从抗赤霉病早期遗传研究、抗病基因/QTL挖掘、基因/QTL效应研究和抗病基因克隆等方面回顾了抗赤霉病遗传研究进展,并对基于表型选择和分子标记辅助的抗赤霉病育种成就进行了总结.在分析现有普通小麦抗源和外源抗性材料的育种利用局限的基础上,针对性地提出3点建议:一是加强对已育成和推广品种的抗性鉴定,筛选其中的抗病品种进行抗病基因研究;二是利用抗病基因的加性效应聚合现有品种携带的不同抗病基因,减少抗病基因与不利农艺性状的连锁累赘,培育抗赤霉病高产品种;三是加大外源基因的发掘、改造和利用.  相似文献   
2.
小麦赤霉病是一种世界性的真菌病害,研究小麦的遗传与机理能为小麦抗赤霉病研究提供理论依据.小麦赤霉病抗性类型可以分为抗侵染(TypeⅠ)、抗扩展(TypeⅡ)、抗脱氧雪镰刀菌烯醇毒素(DON)积累(TypeⅢ)、籽粒抗性(TypeⅣ)、耐病性(TypeⅤ)5种,前两者是目前小麦抗赤霉病研究的主要途径.迄今为止,已定名的抗性基因有7个,为Fhb1~Fhb7,但仅Fhb1和Fhb7被克隆,正在被逐渐应用在小麦抗赤霉病育种中.小麦赤霉病的抗性机理分为被动抗性(形态抗性)和主动抗性(生理抗性)2种.本文主要从小麦赤霉病危害、抗赤霉病主效基因和其他抗赤霉病QTL定位、生理和形态抗性机制研究进展等方面对小麦抗赤霉病的部分研究现状进行总结.提出在抗性基因克隆的基础上,结合细胞生物学、分子生物学,利用基因沉默、基因编辑等方法更进一步地对抗病遗传机制和机理进行研究,为小麦抗赤霉病遗传育种奠定基础.  相似文献   
3.
株高作为小麦育种的重要指标,对产量具有较大的影响。为进一步挖掘小麦株高的数量性状位点(quantitative trait loci,QTL),本研究以扬麦12和偃展1号杂交得到的包含205个家系的重组自交系(recombinant inbred lines,RIL)群体为材料,利用小麦55K SNP芯片构建高密度遗传图谱,结合 3年共6个环境的表型数据对株高性状进行QTL定位分析。结果表明,在染色体2B(1)、4B(1)、4D(1)、5A(1)、5B(1)和7D(2)上共检测到7个与株高相关的QTL。QPh.yaas-4BQPh.yaas-5AQPh.yaas-7D.1的矮秆效应来源于扬麦12,其余4个QTL的矮秆效应来源于偃展1号。在6个环境下都能检测到的位点是QPh.yaas-4BQPh.yaas-4D,对株高的贡献率分别14.50%~24.09%和19.01%~29.80%,经过比对发现,这2个QTL分别是Rht1Rht2QPh.yaas-5A在5个环境下被检测到,对株高的贡献率为3.29%~5.36%;QPh.yaas-2DQPh.yaas-7D.2在4个环境中均被检测到,对株高的贡献率分别为3.45%~6.14%和3.16%~4.10%;QPh.yaas-5BQPh.yaas-7D.1分别在2个和3个环境中被检测到,对株高的贡献率分别是2.27%~5.09%和2.72%~4.82%。QTL比较分析后发现,QPh.yaas-7D.1QPh.yaas-7D.2可能是新的株高位点。研究Rht-B1Rht-D1对千粒重、穗长和穗粒数的效应,发现Rht-B1位点对这些农艺性状无显著效应,Rht-D1位点仅对千粒重有显著效应,其株高增效等位变异可显著增加千粒重。在自然群体中验证Rht-B1Rht-D1的效应结果与RIL群体结果一致。  相似文献   
4.
5.
小麦茎秆实心度对茎秆强度的影响及相关性状QTL分析   总被引:1,自引:0,他引:1  
在QTL水平上研究茎秆实心度与强度的遗传关系及实心度对茎秆强度的影响,为小麦抗倒伏育种提供依据。利用普通小麦宁麦18与实秆小麦种质"武云实秆"的F2群体和F2:3家系,对小麦茎秆强度、实心度及影响实心度的相关性状包括厚径比、壁厚、茎粗和髓腔直径进行了相关分析,并对茎秆强度相关性状QTL进行分子标记定位及遗传效应分析。结果表明小麦茎秆强度与厚径比、壁厚均呈极显著正相关,与髓腔直径呈极显著负相关。基于复合区间作图法进行QTL定位,检测到与茎秆强度、厚径比、壁厚、茎粗和髓腔直径相关QTL共23个,分布在1B、3B、4A、4B、5A上,表型贡献率3.5%~44.0%。在染色体3B、4A和5A上的标记区间gwm547–gwm247、wmc718–wmc468和gwm156–gwm443均检测到贡献率很高的茎秆实心度相关QTL,说明在这3条染色体上可能存在控制茎秆强度的主效QTL。用普通小麦宁麦13(N13)×武云实秆的24个F7家系检验分子标记gwm247的可靠性表明利用标记gwm247选育茎秆实心度优于宁麦13的概率较大。研究结果为进一步精细定位相关主效QTL以及分子标记辅助改良小麦茎秆强度奠定了基础。  相似文献   
6.
小麦穗部性状特别是穗顶部、基部结实性对穗粒数的建成及产量具有重要影响。为给QTL精细定位、基因克隆及穗部性状分子标记的开发和辅助选择奠定基础,本研究以扬麦17与宁麦18杂交获得的310个F2群体及其衍生的F2:3家系为材料,构建了一个由215个SSR标记组成的全长为1 717 cM的遗传连锁图谱,共覆盖19条染色体(1D和6A未涉及),标记间平均距离为7.99 cM,并对6个穗部性状进行QTL定位。利用复合区间作图法共检测出22个QTL,分布在1A、1B、2B、2D、3B、3D、4B、5A、5B和7A染色体上。其中,穗顶部结实粒数QTL有7个,穗基部结实粒数QTL有2个,穗长QTL有5个,总小穗数QTL有3个,不育小穗数QTL有2个,穗粒数QTL有3个,表型贡献率为2.56%~13.66%。控制穗顶部和基部结实粒数QTL的增效基因来源于宁麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   
7.
为了发掘更多与小麦溶剂保持力(Solvent retention capacity,SRC)显著相关的位点,以171个小麦品种(系)组成的自然群体为材料,于2017-2018和2018-2019年度分别在扬州、高邮种植,收获后测定5%乳酸SRC、5%碳酸钠SRC、50%蔗糖SRC和水SRC,结合群体90K SNP芯片基...  相似文献   
8.
穗部性状和株高是小麦育种的重要指标。以扬麦13 (Yangmai 13,简称YM13)和CIMMYT引进种质人工合成小麦衍生系C615为亲本构建重组自交系群体为研究材料,基于小麦90K SNP芯片基因型数据,结合3个环境下表型结果,分别检测到1个每穗结实总小穗数、2个穗长、2个结实小穗着生密度和3个株高的位点。其中,每穗结实总小穗数位点QSN.yaas-3B与株高位点QPH.yaas-3B处于同一位置,穗长位点QSL.yaas-5A、结实小穗着生密度位点QSC.yaas-5A和株高位点QPH.yaas-5A处于同一位置,穗长位点QSL.yaas-6A和结实小穗着生密度的位点QSC.yaas-6A处于同一位置。比对结果显示QSN.yaas-3B/QPH.yaas-3B和QSL.yaas-6A/QSC.yaas-6A位点均未见报道。进一步将QSL.yaas-5A/QSC.yaas-5A/QPH.yaas-5A位点紧密连锁SNP标记转化为KASP标记QC615-5A-KASP,并在105份小麦品系中初步验证其育种效应。研究结果可为小麦产量相关性状分子育种提供参考。  相似文献   
9.
为适应我国长江流域花生生产的需要,以中花10号为母本,与自选品系漯河紫皮杂交,用一粒传法结合南繁加代选育出高产、高出仁率花生新品种漯花10号。介绍了该品种的选育过程及其区域试验与生产试验的结果:两年区域试验平均荚果产量4645. 5 kg/hm^2,比对照增产2. 32%,籽仁产量3513. 0 kg/hm^2,比对照增产6. 73%;生产试验平均荚果产量4125. 15 kg/hm^2,比对照增产7. 96%,籽仁产量3118. 5 kg/hm^2,比对照增产12. 48%。  相似文献   
10.
分析植被恢复过程中基材土壤肥力,为进一步改进生境基材性能、完善植被混凝土生态防护技术提供科学依据。在湖北省宜昌市选择清江水布垭电站公路边坡(S样地)、高坝洲电站进厂公路边坡(G样地)和三峡大学图书馆后边坡(T样地)等3个植被混凝土生态修复边坡,采用系统布点法,在坡面5~10 cm深度处取环刀样,对生境基材多年份(2007-2012年)土壤主要肥力因子进行定量测定,并采用T-S模糊神经网络模型对肥力水平进行综合评价分析。结果表明:有机质S样地由13.34 g/kg增加至32.89 g/kg,G样地由14.78 g/kg增加至35.02 g/kg,T样地在5.65~22.87 g/kg缓慢、波动增长;土壤全氮含量S样地0.12~2.27 g/kg,G样地0.13~1.64 g/kg,T样地0.08~0.84 g/kg;速效氮含量S样地23.94~170.87 mg/kg,G样地31.70~237.51 mg/kg,T样地20.88~122.28 mg/kg;全磷变化范围S样地2.30~2.66 g/kg,G样地1.64~2.06 g/kg,T样地1.63~2.18 g/kg;速效磷S样地2007、2009年异常丰富,均在300 mg/kg以上,其余年度为36.23~154.29mg/kg,G、T样地变化规律与S样地类似;速效钾G样地波动范围在59.87~207.03mg/kg,S样地、T样地波动幅度较小且总体处于丰富水平。各样地综合肥力指数随着监测时间的推移,总体是逐渐减小趋于稳定,综合肥力指数S样地3.14~2.69,G样地3.25~2.73,T样地3.47~2.74。总体上各样地综合肥力水平呈现先增长后稳定的发展趋势,肥力综合等级处于中等向上水平。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号