首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
林业   1篇
畜牧兽医   7篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A breeding program has been established in 2008 to improve productivity of Horro chicken, an indigenous population in the western highlands of Ethiopia. The pedigree descended from 26 sires and 260 dams. Body weights were measured every 2 weeks from hatch to 8 weeks then every 4 weeks for the next 8 weeks. Egg production was recorded to 44 weeks of age for one generation. Genetic parameters were estimated using animal model fitted with common environmental effects for growth traits and ignoring common environment for egg production traits. Direct heritabilities ranged from low (0.15 ± 0.08), for body weight at 6 weeks, to moderate (0.40 ± 0.23), for hatch weight. Heritabilities of common environmental effects on growth were high at hatch (0.39 ± 0.10) and remained low afterwards. Age at first egg showed a very low heritability (0.06 ± 0.15). Heritabilities of egg numbers in the first, second, third, and fourth months of laying were 0.32 (±0.13), 0.20 (±0.16), 0.56 (±0.15), and 0.25 (±0.14), respectively. Heritabilities of cumulative of monthly records of egg numbers were from 0.24 ± 0.16 (for the first 2 months, EP12) to 0.35 ± 0.16 (over the 6 months, EP16). Body weight at 16 weeks of age (BW16) has a strong genetic correlation with the cumulative of monthly records: 0.92 (with EP12), 0.69 (with EP36), and 0.73 (with EP16). Besides their strong association, BW16 and EP16 showed higher heritability, relative to their respective trait categories. These two traits seemed to have common genes and utilizing them as selection traits would be expected to improve both egg production and growth performance of local chicken. However, the standard errors of estimates in this study were mostly high indicating that the estimates have low precision. Parameter estimations based on more data are needed before applying the current results in breeding programs.  相似文献   
2.
Long-term selection on production results in increased environmental sensitivity. This often is expressed through decreased fertility and increased health problems. The phenomenon has been described in all common farm animal species. One theory is that potential resource intake is insufficient to express production potential. Additional resources are drawn away from fitness-related traits, such as fertility and health, to further increase observed production. In addition, resources for maintaining fitness depend on the demands by the environment. In a harsh environment, more resources are required for fitness-related traits than in an optimal environment. Literature results show that selection in an optimal environment will increase sensitivity to less optimal environments. The objectives of this paper were to increase understanding of the underlying mechanism behind the development of environmental sensitivity and to gain insight into correlated response(s) when selection is on observed production. A resource allocation model was defined where observed production depended on production potential, resource intake potential, and the allocation of resources to production or fitness, including maintenance, health, and reproduction. Penalties for reproductive performance and probability of survival were included when the proportion of resources assigned to fitness dropped below a certain, environment-related, threshold. Mass selection was practiced on observed production during 40 generations using stochastic simulation. Depending on the heritabilities of the underlying components and on the environment, selection on observed production resulted in a decrease in reproductive rate and in the development of environmental sensitivity when resource intake becomes limiting. Correlations of observed production with underlying components changed across generations, following a nonlinear pattern. The proposed model is simple, but increases the understanding of underlying mechanisms and consequences of selection for production when resources are limiting.  相似文献   
3.
The objectives of this study were 1) to investigate if there were differences in the relation between temperature and reproductive performance traits in 2 different sow lines, a Yorkshire line producing mainly in temperate climates and a Large White line producing mainly in warm climates, and 2) to determine the upper critical temperature (UCT) for the reproductive performance of these 2 lines. Sows are exposed to heat stress when temperature exceeds the UCT of the thermo-neutral zone. Data included 32,631 observations on reproductive performance from 11,935 sows on 20 farms in Spain, collected from 2003 to 2005. Sows belonged to 2 different purebred sow lines, named D (Yorkshire sow line, producing mainly in temperate climates) and I (Large White sow line, producing mainly in warm climates). Only first insemination records per parity were used and were combined with the maximum outside temperature at day of insemination. Upper critical temperatures were studied for 3 reproduction traits: farrowing rate (0 or 1), litter size (range from 1 to 25), and total number of piglets born per first insemination (combination of farrowing rate and litter size, range from 0 to 25). Data were corrected for fixed effects, which included parity, service sire, and an interaction between farm and year. Corrected data were used as observations in the models to study the effect of outside temperature on reproductive performance. Two models were compared for goodness of fit: a linear regression model and a plateau-linear model with the plateau representing the thermo-neutral zone and a linear decrease above that zone. Farrowing rate of I-line sows was not affected by temperature. For litter size and total number born per first insemination of I-line sows no UCT could be estimated. These traits were linearly affected by temperature. For all 3 reproduction traits of the D-line the best model was the plateau-linear model; the UCT for the D-line sows was estimated to be 19.2 degrees C for farrowing rate, 21.7 degrees C for litter size, and 19.6 degrees C for total number born per first insemination. The decrease in reproductive performance of I-line sows with increasing outside temperature was less than in D-line sows. From this study it can be concluded that there are differences in heat stress tolerance between sow lines as measured by the differences in reproductive performance. These differences are an indication of genetic differences in heat stress tolerance in sow lines.  相似文献   
4.
To generate information essential for the implementation of breeding schemes suitable for village poultry producers in Ethiopia, a survey was conducted aimed at defining the socioeconomic characteristics of the production environments in different geographic regions, understanding the important functions of chickens, identifying farmers’ choice of chicken breeds and the underlying factors that determine the choice of genetic stock used. The survey included both questionnaire survey and a participatory group discussion. A total of 225 households (45 households from each of five Woredas) were interviewed. The questionnaire was designed to collect data covering general information on village poultry production such as socio-management characteristics, production objectives, population structure, breed choice and trait preferences, market preferences of specific traits, and farmers’ selection practices. The participatory farmers’ discussions were designed to involve stakeholders in defining the breeding objective “traits” and deriving their relative importance in the production environment based on the different functions of chickens and “traits” identified in the interviews. The results showed that production of eggs for consumption is the principal function of chickens in most regions followed by the use as source of income and meat for home consumption. The production system in all geographic regions studied revealed similar features generally characterized by extensive scavenging management, absence of immunization programs, increased risk of exposure of birds to disease and predators, and reproduction entirely based on uncontrolled natural mating and hatching of eggs using broody hens. Farmers’ ratings of indigenous chickens with respect to modern breeds showed the highest significance of the adaptive traits in general, and the superior merits of indigenous chickens to high yielding exotic breeds in particular. Adaptation to the production environment was the most important attribute of chickens in all the study areas. The high significance attributed to reproduction traits indicates the need for maintaining broody behavior and high level of hatchability while breeding for improved productivity of indigenous chickens for village conditions. The market price of chickens is primarily dictated by weight, but farmers rated growth (males) and number of eggs followed by growth (females) as the production traits they would like the most to be improved. Therefore, the ultimate breeding goal should be to develop a dual-purpose breed based on indigenous chicken genetic resources with any of the comb types other than single for all the regions studied having the most preferred white body plumage for farmers in the Amhara region and red body plumage for those in Oromia, Benshangul-Gumuz, and Southern regions.  相似文献   
5.
During the last two decades a decrease of salt marsh area of at least 6% was found along the mainland coast of the Dutch Wadden Sea. However, it was not clear what determined the seaward boundary of the pioneer vegetation in this area. In the period 1993–1995, abiotic and biological variables were monitored along a transect from the mudflat to the low salt marsh in two sites, the Negenboerenpolder and the Noordpolder. At the Negenboerenpolder site the pioneer zone extended further from the dike and had a dense cover with vegetation when compared to the Noordpolder site. The observed difference in extension of the pioneer zone could not be attributed to differences in tidal frequency, sedimentation rate or nutrient availability. During the winter a dramatic loss in seed numbers was found at both sites. This loss decreased from mudflat to low marsh. The mud/sand ratio, on the other hand, increased from mudflat to low marsh and was higher in the Negenboerenpolder. The shear strength of the top soil layer measured with an insitu erosion flume was correlated to the mud/sand ratio and increased with an increasing mud content of the soil. The strength of the soil seems to be the key factor for the settlement and survival of Salicornia dolichostachya in the pioneer zone.  相似文献   
6.
The objectives of this study were to estimate genetic parameters and the influence of systematic effects on behavior test results in dogs. Behavior test results on 1,813 Labrador Retrievers (LR) and 2,757 German Shepherd Dogs (GSD) were analyzed. The behavior test included observations on courage, defense drive, prey drive, nerve stability, temperament, cooperation, affability, and gun shyness. Sex and age influenced most of the traits, and seasons of birth and testing and litter size and composition influenced some of the traits. Apart from defense drive in GSD, and courage, nerve stability, hardness, and affability in LR, all traits were heritable, with heritabilities ranging from 0.14 for hardness to 0.38 for affability in GSD, and from 0.03 for affability to 0.56 for gun shyness in LR. Genetic correlations ranged from 1.00 (LR) and 0.95 (GSD) between courage and hardness to -0.01 (LR) and -0.03 (GSD) between gun shyness and defense drive. Most genetic correlations were positive. Correlations with cooperation were mainly negative, especially in GSD. Genetic correlations between courage and defense drive in LR (0.26) and GSD (0.80), between courage and prey drive in LR (0.27) and GSD (0.65), between affability and nerve stability in LR (0.09) and GSD (0.64), between affability and temperament in LR (-0.24) and GSD (0.39), and between cooperation and hardness in LR (0.28) and GSD (-0.67) were significantly different between the breeds. Genetic parameters for defense drive and cooperation in GSD and hardness and gun shyness in LR were genetically different between the sexes. Results of this study indicate that correction for systematic effects is essential when making selection decisions. Estimating breeding values would be a good solution, incorporating both correction for systematic effects and using all genetic links. Genetic parameters need to be estimated for each breed separately.  相似文献   
7.
Animals will show reduced production when exposed to a constant infection pressure unless they are fully resistant, the size of the reduction depending on the degree of resistance and the severity of infection. In this article, the use of QTL for disease resistance for improving productivity under constant infection pressure is investigated using stochastic simulation. A previously published model was used with two thresholds for resistance: a threshold below which production is not possible and a threshold above which production is not affected by the infection. Between thresholds, observed production under constant infection is a multiplicative function of underlying potential production and level of resistance. Some simplifications of reality were adopted in the model, such as no genetic correlation between potential production and resistance, the absence of influence of lack of resistance on reproductive capacity, and the availability of phenotypes in both sexes. Marker-assisted selection was incorporated by assuming a proportion of the genetic variance to be explained by the QTL, which thus is defined as a continuous trait. Phenotypes were available for production, not for resistance. The infection pressure may vary across time. Results were compared to mass selection on production under constant as well as intermittent infection pressure, where the infection pressure varied between but not within years. Selection started in a population with a very poor level of resistance. Incorporation of QTL information is valuable (i.e., the increase in observed production relative to mass selection) when a large proportion of the additive genetic variance is explained by the QTL (50% genetic variance explained) and when the heritability for resistance is low (h2R = 0.1). Under constant infection pressure, incorporating QTL information does not increase selection responses in observed production when the QTL effect explains less than 25% of the genetic variance. Under intermittent selection pressure, the use of QTL information gives a slightly greater increase in observed production in early generations, relative to mass selection on observed production, but still only when the QTL effect is large or the heritability for resistance is low. The additional advantage of incorporating QTL information is that use of (preventive) medical treatment is possible, or animals may be evaluated in uninfected environments.  相似文献   
8.
This article presents a model describing the relationship between level of disease resistance and production under constant infection pressure. The model assumes that given a certain infection pressure, there is a threshold for resistance below which animals will stop producing, and that there is also a threshold for resistance above which animals produce at production potential. In between both thresholds animals will show a decrease in production, the size of decrease depending on the severity of infection and the level of resistance. The dynamic relationship between production and resistance when level of resistance changes, such as due to infection, is modeled both stochastically and deterministically. Selection started in a population with very poor level of resistance introduced in an environment with constant infection pressure. Mass selection on observed production was applied, which resulted in a nonlinear selection response for all three traits considered. When resistance is poor, selection for observed production results in increased level of resistance. With increasing level of resistance, selection response shifts to production potential and eventually selection for observed production is equivalent to selection for production potential. The rate at which resistance is improved depends on its heritability, the difference between both thresholds, and selection intensity. The model also revealed that when a zero correlation between resistance and production potential is assumed, the phenotypic correlation between resistance and observed production level increases for low levels of resistance and subsequently asymptotes to zero, whereas the phenotypic correlation between production potential and observed production asymptotes to 1.0. For most breeding schemes investigated, the deterministic model performed well in relation to the stochastic simulation results. Experimental results reported in literature support the model predictions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号