首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
林业   1篇
植物保护   9篇
  2022年   1篇
  2021年   1篇
  2012年   1篇
  2007年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Tomato chlorosis virus causes yellow leaf disorder epidemics in many countries worldwide. Plants of Physalis ixocarpa showing abnormal interveinal yellowing and plants of Physalis peruviana showing mild yellowing collected in the vicinity of tomato crops in Portugal were found naturally infected with ToCV. Physalis ixocarpa and P. peruviana were tested for susceptibility to ToCV by inoculation with Bemisia tabaci, Q biotype. Results confirmed that ToCV is readily transmissible to both species. The infection was expressed in P. ixocarpa by conspicuous interveinal yellow areas on leaves that developed into red or brown necrotic flecks, while P. peruviana test plants remained asymptomatic. Infected plants of both P. ixocarpa and P. peruviana served as ToCV sources for tomato infection via B. tabaci transmission. This is the first report of P. ixocarpa and P. peruviana as natural hosts of ToCV.  相似文献   
2.
Filamentous flexous partic les of unusual morphology, previously associated with several ringspot isolates, were detected also in psorosis A and psorosis B isolates by serologically specific electron microscopy using an antiserum to citrus ringspot. Upon partial purification of six ringspot, six psorosis A, and three psorosis B isolates, a specific protein of 47 kDa was detected in most cases, but two isolates (one psorosis A and one ringspot) had a 46 and a 48 kDa-protein, respectively. These differences in molecular masses were observed when purification was done from different host species or from plants co-inoculated with two isolates differing by their protein size. The three types of protein were serologically related in Western blots. Our results indicate that a common virus with different strains may be involved in psorosis A, psorosis B, and ringspot diseases.  相似文献   
3.
ABSTRACT Isolates of citrus tristeza virus (CTV) differ widely in their biological properties. These properties may depend on the structure of viral RNA populations comprising the different isolates. As a first approach to study the molecular basis of the biological variability, we have compared the sequences of multiple cDNA clones of the two terminal regions of the RNA from different CTV isolates. The polymorphism of the 5' untranslated region (UTR) allowed the classification of the sequences into three groups, with intragroup sequence identity higher than 88% and intergroup sequence identity as low as 44%. The variability of an open reading frame (ORF) 1a segment adjacent to the 5' UTR supports the same grouping. Some CTV isolates contained sequences of more than one group. Most sequences from Spanish isolates belonged to group III, whereas a Japanese isolate was composed mostly of sequences of groups I and II. The mildest isolates contained only sequences of group III, whereas the most severe isolates also contained sequences of groups I, II, or both. The most stable secondary structure predicted for the 5' UTR was composed of two stem-loops and remained essentially unchanged as a result of compensatory mutations in the stems and accommodation of most of the variability in the loops. In contrast to the 5'-terminal region, the variability of the 3'-terminal region of CTV RNA was very much restricted, with nucleotide identity values higher than 90%. The presence of a conserved putative "zinc-finger" domain adjacent to a basic region in p23, the predicted product of ORF 11, suggests that this protein might act as a regulatory factor during virus replication.  相似文献   
4.
Tomato chlorosis virus (ToCV, genus Crinivirus, family Closteroviridae) causes yellowing of tomatoes in many countries worldwide. Symptoms of ToCV infections in tomatoes include inter-veinal yellow chlorotic areas that develop first on lower leaves and then advance towards the upper part of the plant. ToCV is transmitted in nature by the whiteflies Bemisia tabaci, Trialeurodes vaporariorum, and Trialeurodes abutilonea in a semi-persistent manner. In the summer of 2006, a few potato (Solanum tuberosum) volunteer plants heavily infested with the whitefly B. tabaci were found growing within a pepper crop in the province of Málaga, southern Spain. Leaf samples from volunteer plants were tested for the presence of ToCV by molecular hybridization and RT-PCR, and were shown to be infected. Furthermore, potato plants were readily infected by ToCV after experimental transmission using B. tabaci biotype Q as vector. ToCV was also detected in the tubers from infected plants that subsequently produced infected plants. Potato also served as virus source for tomato infection via B. tabaci transmission.  相似文献   
5.
The tomato chlorosis virus (ToCV), transmitted by whitefly species of the genera Bemisia and Trialeurodes in a semipersistent manner, causes significant losses in solanaceous crops including tomato (Solanum lycopersicum) and sweet pepper (Capsicum annuum). Worldwide reports of natural and experimental infection of sweet pepper plants with ToCV are contradictory, raising the question of whether the critical factor determining infection is related to the susceptibility of sweet pepper cultivars or the genetics of virus isolates. In this work, ToCV isolates obtained from different hosts and geographical origins were biologically and molecularly analysed, transmitted by B. tabaci MEAM1 and MED, and the reaction of different sweet pepper cultivars was evaluated under different environmental conditions. Brazilian ToCV isolates from tomato, potato (S. tuberosum), S. americanum, and Physalis angulata did not infect plants of five sweet pepper cultivars when transmitted by B. tabaci MEAM1. Temperatures did not affect the sweet pepper susceptibility to tomato-ToCV isolates from São Paulo, Brazil, and Florida, USA. However, sweet pepper-ToCV isolates from Spain and São Paulo, Brazil, were transmitted efficiently to sweet pepper plants by B. tabaci MEAM1 and MED. Although the results indicated that ToCV isolates from naturally infected sweet pepper plants seem to be better adapted to plants of C. annuum, phylogenetic analyses based on the complete nucleotide sequences of RNA1 and RNA2 as well as the p22 gene did not reveal significant nucleotide differences among them. Additional studies are needed to identify intrinsic characteristics of ToCV isolates that favour infection of sweet pepper plants.  相似文献   
6.
Journal of Pest Science - The whiteflies of the Bemisia tabaci (Genn.) complex (Hemiptera: Aleyrodidae) are serious agricultural pests that cause severe losses to vegetable, ornamental and fiber...  相似文献   
7.
Typing of Tomato Yellow Leaf Curl Viruses in Europe   总被引:2,自引:0,他引:2  
Tomato yellow leaf curl disease is spreading in southern Europe, where it has quickly become a serious problem. In recent years, several virus isolates have been characterised. Although with some genetic variability, all isolates found in Europe belong to one of two species Tomato yellow leaf curl-Sardinia (TYLCV-Sar) or Tomato yellow leaf curl-Israel (TYLCV-Is). Several methods were tested to identify and type TYLCV isolates from field samples: (1) RFLP of a DNA fragment amplified from the coat protein gene; (2) PAGE of a fragment amplified from the C2 gene; (3) dot-blot hybridisation. All methods enabled the detection of the TYLCVs and provided good indications for attributing them to one species or the other. However, for typing purposes, the RFLP method was the most reliable, due to the easily recognisable pattern produced by the two virus species present in Europe. Dot-blot hybridisation is less expensive for identifying TYLCVs in large numbers of samples, particularly when a mixture of two probes is used. PAGE of the C2 fragment is the fastest of the methods tested.  相似文献   
8.
ABSTRACT A progressive displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is was observed in tomato epidemics in southern Spain based on incidence data of both virus species obtained during surveys conducted between 1996 and 1998. Ecological factors that might be involved in such a displacement, such as competition of TYLCV-Sr and TYLCV-Is in tomato, transmission by local biotypes (B and Q) of Bemisia tabaci, and presence in weeds and alternate crops, have been analyzed. No selective advantage is observed for TYLCV-Sr or TYLCV-Is in tomato plants either infected via Agrobacterium tumefaciens or via B. tabaci. However, TYLCV-Is is more efficiently vectored by local biotypes of B. tabaci; and common bean, a bridge crop between tomato crops, is a host for TYLCV-Is but not TYLCV-Sr. Therefore, common bean acts as a reservoir for TYLCV-Is. These two factors are probably responsible for the displacement of TYLCV-Sr by TYLCV-Is as the causative agent of epidemics in tomato in southern Spain.  相似文献   
9.
ABSTRACT The evolution of the plant single-stranded DNA virus Tomato yellow leaf curl Sardinia virus (TYLCSV) (genus Begomovirus, family Geminiviridae) has been monitored for 8 years after its appearance in southern Spain. Variation within three genomic regions of 166 TYLCSV isolates collected from three locations was assessed by single-strand conformation polymorphism (SSCP) analysis. According to SSCP, the intergenic region (IR) was the most variable. Low genetic diversity was found within the population and geographical or temporal differences were not evident. Nucleotide sequences of specific genomic regions of haplotypes identified by SSCP indicated close relationships among them. Therefore, the Spanish TYLCSV population appears to represent a single, undifferentiated population. The analysis of IR sequences for a subsample of 76 randomly chosen isolates confirmed the limited genetic diversity revealed by the SSCP analysis. A tendency to a lineal increase in diversity over time was observed in Málaga and Almería subpopulations; however, no accumulation of mutations in single isolates was evident. Negative selection to variation seems to operate to conserve certain regions of the genome. Thus, the low genetic diversity found in the studied TYLCSV population might be the result of a founder effect with subsequent selection against less fit variants arising by mutation.  相似文献   
10.
The yellow leaf curl disease of tomato is caused by a complex of virus species, two of which, tomato yellow leaf curl virus (TYLCV)-Sar and TYLCV-Is, are involved in epidemics of southern Spain. Plants of Mercurialis ambigua and Solanum luteum showing abnormal upward leaf curling and leaf distortion collected in the vicinity of tomato crops were found to be naturally infected with TYLCV-Is and TYLCV-Sar, respectively. These weed species, as well as Datura stramonium and S. nigrum, which had also been found to be naturally infected by TYLCVs in the same region in previous studies, were tested for susceptibility to TYLCV-Sar or TYLCV-Is by Agrobacterium tumefaciens-mediated and by Bemisia tabaci inoculation. Results indicated that both TYLCV-Sar and TYLCV-Is were able to infect D. stramonium and M. ambigua, whereas only TYLCV-Sar infected S. nigrum and S. luteum. Implications for the epidemiology of TYLCV are discussed. This is the first report of M.ambigua and S. luteum as hosts of TYLCV.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号