首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
林业   6篇
  2009年   4篇
  2008年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 359 毫秒
1
1.
Silvicultural treatments are often needed in selectively logged tropical forest to enhance the growth rates of many commercial tree species and, consequently, for recovering a larger proportion of the initial volume harvested over the next cutting cycle. The available data in the literature suggest, however, that the effect of silvicultural treatments on tree growth is smaller in dry forests than in humid forest tree species. In this study, we analyze the effect of logging and application of additional silvicultural treatments (liana cutting and girdling of competing trees) on the growth rates of future crop trees (FCTs; i.e., trees of current and potentially commercial timber species with adequate form and apparent growth potential). The study was carried out in a tropical dry forest in Bolivia where a set of 21.25-ha plots were monitored for 4 years post-logging. Plots received one of four treatments that varied in intensity of both logging and silvicultural treatments as follows: normal (reduced-impact) logging; normal logging and low-intensity silviculture; increased logging intensity and high-intensity silviculture; and, unlogged controls. The silvicultural treatments applied to FCTs involved liberation from lianas and overtopping trees. Results showed that rates of FCT stem diameter growth increased with light availability, logging intensity, and intensity of silvicultural treatments, and decrease with liana infestation degree. Growth rate increment was larger in the light and intensive silvicultural treatment (22–27%). Long-lived pioneer species showed the strongest response to intensive silviculture (50% increase) followed by total shade-tolerant species (24%) and partial shade-tolerant species (10%). While reduced-impact logging is often not sufficient to guarantee the sustainability of timber yields, application of silvicultural treatments that substantially enhanced the growth rates of FCTs will help move the management of these forests closer to the goal of sustained yield.  相似文献   
2.
Fredericksen  T.S.  Justiniano  M.J.  Mostacedo  B.  Kennard  D.  McDonald  L. 《New Forests》2000,20(1):45-64
A comparative study of the regeneration ecology ofthree lesser-known leguminous timber species wasconducted in the seasonally dry forests of SantaCruz, Bolivia to determine species regenerationstrategies and make silvicultural recommendationsfor these species. The study included arepresentative from each subfamily of Leguminosae:Anadenanthera colubrina (Vell. Conc.) Benth.(Mimosaceae), Copaifera chodatiana Kunth.(Caesalpinaceae), and Centrolobium microchaeteC. Martius (Fabaceae). After production in themid-late dry season, seeds of all species sufferedhigh (>30%) rates of predation. For seedssurviving predation, Anadenanthera germinatedwithin three days after the first rains and a highgermination capacity (82%), but most seedlings diedfrom inadequate light or during subsequent periodsof drought. Copaifera germinated more slowlybut had high germination capacity (85%). Centrolobium had very low germination capacity(4%) and germinative energy. Most successfulregeneration of Centrolobium occurred viasprouting from damaged roots on or near loggingroads where it had a density of 261 root sprouts/ha.Anadenanthera regenerated best from seedin areas with soil disturbance or burning. Theregeneration of these species will likely increaseunder more intensive logging and/or post-harvestcompetition control treatments in logging gaps. Themore shade-tolerant Copaifera is most suitedto the current regime of light selective logging,but all three species are likely to be responsive topost-harvest competition control treatments. Impacts of controlled and natural fire were mixed,but generally seedling regeneration and growth wereeither not significantly affected or were increasedby fire.  相似文献   
3.
A major impediment to the sustainable management of tropical dry forests in Bolivia is the scarcity of natural regeneration of commercial timber tree species. Where regeneration is present, true seedlings of many species are outnumbered by vegetative sprouts from roots, broken stems, and the stumps of felled trees. This study evaluates the importance of resprouts promoted by logging operations for the regeneration of commercially important canopy tree species. The objectives of the study were: (1) to characterize stump and root sprouting behaviors of canopy tree species harvested for timber; (2) to quantify the effect of logging on relative abundances and growth rates of stump sprouts, root sprouts, and true seedlings; (3) to relate the species-specific probabilities of stump sprouting to stump diameter and stump height; and (4) to explore how sprouting varies with the ecological requirements of canopy tree species. The study was carried out 1–5 years after logging of a privately owned land in a Bolivian tropical dry forest. Twenty-seven of the 31 species monitored resprouted at least occasionally, among which Centrolobium microchaete (Leguminosae-Fabaceae) and Zeyheria tuberculosa (Bignoniaceae) were the most frequent stump sprouters, and Acosmium cardenasii (Leguminosae-Fabaceae) and C. microchaete were the most frequent root sprouters. In all species the number of sprouts declined with increasing stump diameter and stump height. The probability of stump resprouting differed among species but did not vary consistently with stump diameter, except in Z. tuberculosa in which it declined. Approximately 45% of juveniles <2 m tall of canopy tree species originated from root or stem sprouts. Light-demanding species tended to regenerate more from seeds and root sprouts than from stumps. Seedling densities were higher in microsites opened by logging, while root and stem sprouts were equally common across microsites. Given their abundance and the fact that root and stem sprouts at least initially grew faster than true seedlings, we conclude that vegetative regeneration in this tropical dry forest is an important mode of post-logging regeneration especially for species that regenerate poorly from seed. Resprout management should be considered as a potentially effective strategy for the procurement of regeneration following logging, especially for species that do not readily recruit from seed.  相似文献   
4.
Use of reduced-impact logging (RIL) techniques has repeatedly been shown to reduce damage caused by logging. Unfortunately, these techniques do not necessarily ameliorate the low growth rates of many commercial species or otherwise assure recovery of the initial volume harvested during the next cutting cycle. In this study, we analyze the effect of logging and application of additional silvicultural treatments (liana cutting and girdling of competing trees) on the growth rates on trees in general and on of future crop trees (FCTs) of 24 commercial timber species. The study was carried out in a moist tropical forest in Bolivia, where we monitored twelve 27-ha plots for 4 years. Plots received one of four treatments in which logging intensity and silvicultural treatments were varied: control (no logging); normal (reduced-impact) logging; normal logging and low-intensity silviculture; and, increased logging intensity and high-intensity silviculture. Tree growth rates increased with intensity of logging and silvicultural treatments. The growth rates of FCTs of commercial species were 50–60% higher in plots that received silvicultural treatments than in the normal logging and control plots. Responses to silvicultural treatments varied among functional groups. The largest increase in growth rates was observed in FCTs belonging to the partially shade-tolerant and the shade-tolerant groups. These results indicate that silvicultural treatments, in addition to the use of RIL techniques, are more likely to result in a higher percentage of timber volume being recovered after the first cutting cycle than RIL alone.  相似文献   
5.
The success of multiple forest management systems is contingent on a variety of social, economic, biophysical, and institutional factors, including the integration of timber and non-timber forest product (NTFP) extraction and management. Selective logging for timber is increasingly taking place in forests where the collection of Brazil nuts, a high-value Amazonian NTFP, also occurs. We report on logging damage to Brazil nut trees in three certified timber concessions in Northern Bolivia from which timber is harvested using reduced-impact logging (RIL) guidelines and nuts are gathered yearly from the ground by local people. Observed frequencies of logging damage to Brazil nut trees were low, likely mirroring the low intensity of timber harvesting (∼0.5 trees/ha and ∼5 m3/ha) being currently applied across the study area. Of the trees ≥10 cm in diameter at breast height about 0.1 Brazil nut trees and 0.4 timber species per hectare suffered some degree of logging damage. Crown loss was the predominant damage type for Brazil nut trees accounting for 50% of all damage. In spite of the observed low rates of tree damage, we further recommend that RIL guidelines be amended to include the pre-harvest marking of pre-reproductive Brazil nut trees along with the future crop trees of commercial timber species. Further refining directional felling to reduce crown damage to Brazil nut trees would also serve to help maintain nut yields in the long term.  相似文献   
6.
Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1–5 yr after selective logging, and experimentally tested the effect of forest fire on populations of invasive grasses. In unlogged forests and in microhabitats created by selective logging we found a total of four alien and 16 native grass species. Grasses covered 2% of unlogged and 4% of logged forest, with grass cover in logged forest concentrated in areas directly disturbed by logging; log landings and roads had relatively greater grass cover (37% and 17%, respectively) than did skid trails (10%) and felling gaps (8%). Total grass cover and grass species richness increased with canopy openness and were greatest in sites most severely disturbed by logging. The grass flora of these disturbed areas was composed mostly of native ruderal species (e.g., Digitaria insularis, Leptochloa virgata), a native bamboo (Guadua paniculata), and Urochloa (Panicum) maxima, a caespitose C4 pasture grass introduced from Africa. Urochloa maxima formed monodominant stands (up to 91% cover and 2–3 m tall) and grew on 69% of log landings and 38% of roads. To better understand the potentially synergistic effects of logging and fire on the early stages of grass invasion, we tested the effect of a 12-ha experimental fire on U. maxima populations in a selectively logged forest. Three years after the fire, the area covered by alien grass in burned forest increased fourfold from 400 m2 (pre-fire) to 1660 m2; over the same period in a logged but unburned (control) area, U. maxima cover decreased from 398 m2 to 276 m2. Increased canopy openness due to fire-induced tree mortality corresponded with the greater magnitude of grass invasion following fire. Selective logging of this dry forest on the southern edge of the Amazon Basin promotes alien grass invasion; when coupled with fire, the rate of invasion substantially increased. Recognition of the grass-promoting potential of selective logging is important for understanding the possible fates of tropical forests in fire-prone regions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号