首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
林业   5篇
  2021年   1篇
  2018年   3篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO(2) assimilation (A(max)), dark respiration (R(d)) and the proportional change in R(d) per 10 °C change in temperature (Q(10) of R(d)) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. A(max) and R(d) were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of A(max) and R(d) expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in A(max) in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q(10) of R(d) did not differ significantly between leaf cohorts; however, failure to account for distinct R(d) between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in A(max) in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as R(d) and nutrient resorption during senescence. Accounting for leaf age as a source of variation of R(d) improves the estimation of foliar respiratory carbon release at the stand scale.  相似文献   
2.

Key message

Direct, non-invasive X-ray microtomography and optical technique observations applied in stems and leaves of intact seedlings revealed that laurel is highly resistant to drought-induced xylem embolism. Contrary to what has been brought forward, daily cycles of embolism formation and refilling are unlikely to occur in this species and to explain how it copes with drought.

Context

There has been considerable controversy regarding xylem embolism resistance for long-vesselled angiosperm species and particularly for the model species for refilling (Laurus nobilis L.).

Aims

The purpose of this study was to resolve the hydraulic properties of this species by documenting vulnerability curves of different organs in intact plants.

Methods

Here, we applied a direct, non-invasive method to visualize xylem embolism in stems and leaves of intact laurel seedlings up to 2-m tall using X-ray microtomography (microCT) observations and the optical vulnerability technique. These approaches were coupled with complementary centrifugation measurements performed on 1-m long branches sampled from adult trees and compared with additional microCT analyses carried out on 80-cm cut branches.

Results

Direct observations of embolism spread during desiccation of intact laurels revealed that 50% loss of xylem conductivity (Ψ50) was reached at ??7.9?±?0.5 and ??8.4?±?0.3 MPa in stems and leaves, respectively, while the minimum xylem water potentials measured in the field were ??4.2 MPa during a moderate drought season. Those findings reveal that embolism formation is not routine in Laurus nobilis contrary to what has been previously reported. These Ψ50 values were close to those based on the flow-centrifuge technique (??9.2?±?0.2 MPa), but at odds with microCT observations of cut branches (??4.0?±?0.5 MPa).

Conclusion

In summary, independent methods converge toward the same conclusion that laurel is highly resistant to xylem embolism regardless its development stage. Under typical growth conditions without extreme drought events, this species maintains positive hydraulic safety margin, while daily cycles of embolism formation and refilling are unlikely to occur in this species.
  相似文献   
3.
4.
Fady  Bruno  Davi  Hendrik  Martin-StPaul  Nicolas  Ruffault  Julien 《New Forests》2021,52(5):733-735

As part of the 2015 Paris climate agreement and under its Green Deal, the EU proposes to strongly rely on forests for offsetting its carbon footprint. However, planting trees should be avoided in wildfire prone and drought prone habitats, which are expanding significantly as climate warms across Europe. In favorable habitats, tree planting remains a controversial solution and the risk of using inappropriate material is high in the absence of long-term planning, unfortunately typical of the forest seed and nursery sector. The EU forest tree planting strategy should pay close attention to local land-use issues, to within- and among-species genetic diversity and should adopt relevant, pluri-annual funding schemes and planting contracts rather than letting market opportunities govern the future of forest tree plantations.

  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号