首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   5篇
林业   1篇
畜牧兽医   69篇
植物保护   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2017年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   10篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2003年   2篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
排序方式: 共有71条查询结果,搜索用时 296 毫秒
1.
2.
OBJECTIVE: To evaluate mu-opioid receptors in synovial membranes of horses and determine whether these receptors are up-regulated in nerve endings during inflammation. SAMPLE POPULATION: Synovial tissue obtained from 39 client-owned horses during arthroscopy and 14 research horses during necropsy; brain and synovial tissues were obtained during necropsy from 1 horse, and control tissues were obtained from a mouse. PROCEDURE: Horses were classified into 7 groups on the basis of histologically determined degree of inflammation. Binding of primary rabbit antibody developed against mu-opioid receptors in equine synovial tissue was studied, using western blot analysis. Synovial membranes were tested for mu-opioid receptors by immunohistochemical staining, using a diaminobenzidine-cobalt chloride chromogen. Homogenates of synovial membranes were evaluated by use of radioligand binding. RESULTS: Examination of western blots of equine thalamus revealed that rabbit antibody developed against mu-opioid receptors yielded a band (molecular weight, 55 kd) that corresponded with that of other opioid receptors. Use of immunohistochemical staining of synovial tissue revealed considerable staining in the proliferative lining layer and in regions surrounding vascular structures. Specific radioligand binding of tissue homogenates was found in all groups. We did not detect significant differences in binding between horses with inflammation and horses without inflammation. CONCLUSIONS AND CLINICAL RELEVANCE: Results of immunohistochemical analysis and radioligand binding of tissue homogenates suggest that there are opioid receptors in synovial membranes of horses. Our results support the practice of intra-articular administration of opioids to relieve pain after arthroscopic surgery in horses.  相似文献   
3.
Double-chambered right ventricle (DCRV) is possibly an emerging congenital cardiac anomaly in dogs. The defect causes clinical and pathophysiologic signs similar to those of congenital pulmonic stenosis in dogs but has distinct diagnostic features, breed predilections, and implications for treatment. The defect is often associated with clinical signs early in life. Surgical correction of DCRV can be undertaken with the aid of cardiopulmonary bypass and offers the prospect of an improved clinical outcome.  相似文献   
4.
OBJECTIVE: To compare indicators of postoperative pain and behavior in dogs with and without a low-dose ketamine infusion added to usual perioperative management. DESIGN: Prospective, randomized, blinded clinical study. ANIMALS: 27 dogs undergoing forelimb amputation. PROCEDURE: Dogs were anesthetized with glycopyrrolate, morphine, propofol, and isoflurane. Thirteen dogs were treated with ketamine IV, as follows: 0.5 mg/kg (0.23 mg/lb) as a bolus before surgery, 10 microg/kg/min (4.5 microg/lb/min) during surgery, and 2 microg/kg/min (0.9 microg/lb/min) for 18 hours after surgery. Fourteen dogs received the same volume of saline (0.9% NaCl) solution. All dogs received an infusion of fentanyl (1 to 5 microg/kg/h [0.45 to 2.27 pg/lb/h]) for the first 18 hours after surgery. Dogs were evaluated for signs of pain before surgery, at the time of extubation, and 1, 2, 3, 4, 12, and 18 hours after extubation. Owners evaluated their dogs' appetite, activity, and wound soreness on postoperative days 2, 3, and 4. RESULTS: Dogs that received ketamine infusions had significantly lower pain scores 12 and 18 hours after surgery and were significantly more active on postoperative day 3 than dogs that received saline solution infusions. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that perioperative administration of low doses of ketamine to dogs may augment analgesia and comfort in the postoperative surgical period.  相似文献   
5.
The present study characterizes the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of the α2‐adrenergic receptor agonists detomidine (DET), medetomidine (MED) and dexmedetomidine (DEX) in parallel groups of horses from in vivo data after single bolus doses. Head height (HH), heart rate (HR), and blood glucose concentrations were measured over 6 h. Compartmental PK and minimal physiologically based PK (mPBPK) models were applied and incorporated into basic and extended indirect response models (IRM). Population PK/PD analysis was conducted using the Monolix software implementing the stochastic approximation expectation maximization algorithm. Marked reductions in HH and HR were found. The drug concentrations required to obtain inhibition at half‐maximal effect (IC50) were approximately four times larger for DET than MED and DEX for both HH and HR. These effects were not gender dependent. Medetomidine had a greater influence on the increase in glucose concentration than DEX. The developed models demonstrate the use of mechanistic and mPBPK/PD models for the analysis of clinically obtainable in vivo data.  相似文献   
6.
Six dogs were used to determine single and multiple oral dose pharmacokinetics of ABT‐116. Blood was collected for subsequent analysis prior to and at 15, 30 min and 1, 2, 4, 6, 12, 18, and 24 h after administration of a single 30 mg/kg dose of ABT‐116. Results showed a half‐life of 6.9 h, kel of 0.1/h, AUC of 56.5 μg·h/mL, Tmax of 3.7 h, and Cmax of 3.8 μg/mL. Based on data from this initial phase, a dose of 10 mg/kg of ABT‐116 (no placebo control) was selected and administered to the same six dogs once daily for five consecutive days. Behavioral observations, heart rate, respiratory rate, temperature, thermal and mechanical (proximal and distal limb) nociceptive thresholds, and blood collection were performed prior to and 4, 8, and 16 h after drug administration each day. The majority of plasma concentrations were above the efficacious concentration (0.23 μg/mL previously determined for rodents) for analgesia during the 24‐h sampling period. Thermal and distal limb mechanical thresholds were increased at 4 and 8 h, and at 4, 8, and 16 h respectively, postdosing. Body temperature increased on the first day of dosing. Results suggest adequate exposure and antinociceptive effects of 10 mg/kg ABT‐116 following oral delivery in dogs.  相似文献   
7.
This case report describes the occurrence of persistent penile erection in a breeding stallion that occurred while the horse was under inhalant anesthesia for a carpal arthroscopy. The horse had no history of breeding problems, and no abnormalities were detected on physical examination, complete blood count, or serum chemistry tests performed prior to surgery. Anesthesia was induced with guaifenesin and ketamine after sedation with xylazine and was maintained with isoflurane in 100% oxygen. Penile erection developed approximately 35 minutes after induction and persisted for over 2 hours despite various physical and pharmacological attempts to alleviate it (massage, cold compresses, intravenous benztropine administration, and intracavernosal phenylephrine). Successful resolution of the erection was obtained by cannulation and drainage of blood from the corpus cavernosum and subsequent irrigation with heparinized sterile saline and infusion of phenylephrine in the corpus cavernosum. The detumescent penis was placed back into the sheath, and purse string sutures were placed in the sheath to ensure the penis would remain inside the sheath during recovery. The stallion's recovery from anesthesia was uneventful, the sutures were removed, and the horse was fitted with a penile sling to prevent additional edema or trauma. The stallion recovered completely from the persistent penile erection. Semen was collected 6 days after the event, and he returned to normal pasture breeding 6 weeks after surgery.  相似文献   
8.
Objective A dog model was developed to study visceral pain by stimulating the ovarian ligament. Study design Prospective experimental trial. Animals Twelve 1‐year old female hound dogs weighing 25.7 ± 3.6 kg. Methods Dogs were anesthetized with sevoflurane. The right ovary was accessed via laparoscopy. A suture was placed around the ovarian ligament and exteriorized through the abdominal wall for stimulation. The noxious stimulus consisted of pulling the ovary and ovarian ligament with a force transducer. The response to noxious stimulation was determined using the anesthetic minimum alveolar concentration requirement (MAC) for sevoflurane. The ovarian MAC was compared to the standardized somatic noxious stimulation tail clamp MAC. The results are depicted as mean ± SD and corrected to sea‐level. Results The stimulus–response curve during ovarian stimulation in three dogs was hyperbolic and best represented by a three‐parameter logistic growth curve model. The curve plateaued at 7.12 ± 4.19 N. From the stimulus‐response curve, we chose 6.61 N to test the consistency and repeatability of the model in nine dogs. The ovarian stimulation MAC for sevoflurane in these dogs was 2.16 ± 0.46%. The ovarian stimulation confidence interval and limits are comparable to the results from tail stimulation MAC. The tail stimulation MACs before and after laparoscopy surgery were not different (1.86 ± 0.28% and 1.77 ± 0.38% respectively; p > 0.05) but lower when compared to the ovarian MAC (p < 0.01). The dogs recovered from anesthesia without complications. Conclusions and clinical relevance The ovarian stimulation model is an adequate and repeatable means of producing visceral stimulation to determine MAC. The model may provide a humane mechanism to study the effectiveness of analgesics for acute ovarian pain.  相似文献   
9.
OBJECTIVE: To evaluate the use of xylazine and ketamine for total i.v. anesthesia in horses. ANIMALS: 8 horses. PROCEDURE: Anesthetic induction was performed on 4 occasions in each horse with xylazine (0.75 mg/kg, i.v.), guaifenesin (75 mg/kg, i.v.), and ketamine (2 mg/kg, i.v.). Intravenous infusions of xylazine and ketamine were then started by use of 1 of 6 treatments as follows for which 35, 90, 120, and 150 represent infusion dosages (microg/kg/min) and X and K represent xylazine and ketamine, respectively: X35 + K90 with 100% inspired oxygen (O2), X35 + K120-(O2), X35 + K150-(O2), X70 + K90-(O2), K150-(O2), and X35 + K120 with a 21% fraction of inspired oxygen (ie, air). Cardiopulmonary measurements were performed. Response to a noxious electrical stimulus was observed at 20, 40, and 60 minutes after induction. Times to achieve sternal recumbency and standing were recorded. Quality of sedation, induction, and recovery to sternal recumbency and standing were subjectively evaluated. RESULTS: Heart rate and cardiac index were higher and total peripheral resistance lower in K150-(O2) and X35 + K120-air groups. The mean arterial pressure was highest in the X35 + K120-air group and lowest in the K150-(O2) group (125 +/- 6 vs 85 +/- 8 at 20 minutes, respectively). Mean Pa(O2) was lowest in the X35 + K120-air group. Times to sternal recumbency and standing were shortest for horses receiving K150-(O2) (23 +/- 6 minutes and 33 +/- 8 minutes, respectively) and longest for those receiving X70 + K90-(O2) (58 +/- 28 minutes and 69 +/- 27 minutes, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: Infusions of xylazine and ketamine may be used with oxygen supplementation to maintain 60 minutes of anesthesia in healthy adult horses.  相似文献   
10.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号