首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18046篇
  免费   83篇
  国内免费   204篇
林业   3807篇
农学   1540篇
基础科学   305篇
  3015篇
综合类   1264篇
农作物   2183篇
水产渔业   1860篇
畜牧兽医   1221篇
园艺   1168篇
植物保护   1970篇
  2024年   7篇
  2023年   44篇
  2022年   98篇
  2021年   104篇
  2020年   86篇
  2019年   77篇
  2018年   2812篇
  2017年   2805篇
  2016年   1242篇
  2015年   144篇
  2014年   117篇
  2013年   86篇
  2012年   878篇
  2011年   2210篇
  2010年   2185篇
  2009年   1332篇
  2008年   1396篇
  2007年   1661篇
  2006年   120篇
  2005年   157篇
  2004年   127篇
  2003年   175篇
  2002年   82篇
  2001年   31篇
  2000年   77篇
  1999年   50篇
  1998年   30篇
  1997年   23篇
  1996年   28篇
  1995年   21篇
  1994年   12篇
  1993年   28篇
  1992年   21篇
  1991年   9篇
  1990年   11篇
  1989年   13篇
  1988年   13篇
  1987年   5篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1910年   1篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
1.
为了解中国不同麦区小麦种质资源籽粒脂肪氧化酶(lipoxygenase,LOX)活性相关基因TaLox-B1的差异和分布,利用小麦4B染色体上的功能标记LOX16LOX18对7个麦区的436份种质资源进行分子检测。结果表明:在供试材料中共检测到3种TaLox-B1基因等位变异类型,分别为TaLox-B1a(与高LOX活性相关)、TaLox-B1b(与低LOX活性相关)和杂合型,其频率分别为19.0%、70.4%和10.6%。小麦LOX活性基因不同变异类型在各生态区的分布存在明显差异:基因型TaLox-B1a在黄淮冬麦区、北部冬麦区和长江中下游冬麦区分布较多,其比例分别为21.1%、19.8%和17.6%;基因型TaLox-B1b在西南冬麦区和长江中下游冬麦区分布较多,比例分别为87.9%、72.5%;杂合型仅存在于北部冬麦区、黄淮冬麦区与长江中下游冬麦区,比例分别为14.2%、12.4%和9.8%。利用标记LOX16LOX18对53个自选高代品系进行分子检测,发现自选品系仅有TaLox-B1b与杂合型两种基因型,其中基因型TaLox-B1ab有32个,比例为60.4%。采用分子标记辅助选择,有利于快速鉴定小麦籽粒LOX活性,加速LOX的遗传改良和新品种选育。  相似文献   
2.
3.
4.
青岛黄海水产研究所266000 欧盟及国际社会对在动物性食品严禁使用1,2一二苯乙烯类药物。我国也相应制定了严禁在肉食动物中使用己烯雌酚(DES)等激素的法规。继而我国于 1999年制定了《中华人民共和国动物及动物源食品残留监控计划》,加强了对违禁药物的监控力度,规定动物产品中1,2-二苯乙烯类药物的最大残留限量(MRL)为不得检出。目前,检测动物产品中DES残留量的方法较多,有紫外分光光度法、液相色谱法、放射免疫法、GC/MS法等。各方法各有优缺点。本文根据残留监控过程中既要大批量快速测定,又…  相似文献   
5.
建昌黑山羊生产性能测定   总被引:1,自引:1,他引:0  
2003年以来,开展了建昌黑山羊生产性能测定。经测定,成年公、母羊体重(kg)分别为38.40±6.44和35.49±4.73,成年公、母羊体高(cm)分别为64.00±2.27和61.57±4.04,成年公(羯)、母羊屠宰率分别为52.94%和48.36%,母羊产羔率为155.80%,经产母羊月均泌乳12.10kg。  相似文献   
6.
Engineering resistance against various diseases and pests is hampered by the lack of suitable genes. To overcome this problem we started a research program aimed at obtaining resistance by transfecting plants with genes encoding monoclonal antibodies against pathogen specific proteins. The idea is that monoclonal antibodies will inhibit the biological activity of molecules that are essential for the pathogenesis. Potato cyst nematodes are chosen as a model and it is thought that monoclonal antibodies are able to block the function of the saliva proteins of this parasite. These proteins are, among others, responsible for the induction of multinucleate transfer cells upon which the nematode feeds. It is well documented that the ability of antibodies to bind molecules is sufficient to inactivate the function of an antigen and in view of the potential of animals to synthesize antibodies to almost any molecular structure, this strategy should be feasible for a wide range of diseases and pests.Antibodies have several desirable features with regard to protein engineering. The antibody (IgG) is a Y-shaped molecule, in which the domains forming the tips of the arms bind to antigen and those forming the stem are responsible for triggering effector functions (Fc fragments) that eliminate the antigen from the animal. Domains carrying the antigen-binding loops (Fv and Fab fragments) can be used separately from the Fc fragments without loss of affinity. The antigen-binding domains can also be endowed with new properties by fusing them to toxins or enzymes. Antibody engineering is also facilitated by the Polymerase Chain Reaction (PCR). A systematic comparison of the nucleotide sequence of more than 100 antibodies revealed that not only the 3′-ends, but also the 5′-ends of the antibody genes are relatively conserved. We were able to design a small set of primers with restriction sites for forced cloning, which allowed the amplification of genes encoding antibodies specific for the saliva proteins ofGlobodera rostochiensis. Complete heavy and light chain genes as well as single chain Fv fragments (scFv), in which the variable parts of the light (VL) and heavy chain (VH) are linked by a peptide, will be transferred to potato plants. A major challenge will be to establish a correct expression of the antibody genes with regard to three dimensional folding, assembly and intracellular location.  相似文献   
7.
DAS-ELISA proved to be reliable enough to detect a latent infection by Tomato spotted wilt virus (TSWV) in asymptomatic stock plants of chrysanthemum. A high density of Frankliniella occidentalis, the predominant vector, in the presence of latently infected stock plants resulted in a high incidence of disease in the chrysanthemum production field. The incidence of disease was low when the vector thrips were not abundant in spite of the presence of latently infected stock plants. These results suggest that an infestation of the vector thrips causes severe secondary spread of TSWV originating from latently infected stock plants in chrysanthemum production fields. Received 27 July 2001/ Accepted in revised form 27 November 2001  相似文献   
8.
杏花器官组织抗寒性研究   总被引:10,自引:0,他引:10  
通过人工模拟霜害试验,研究了杏花抗寒性与花器官组织结构的关系,并统计了冻害率。结果表明:4个仁用杏品种的抗寒性由强到弱为优一、白玉扁、一窝蜂、龙王帽;在同一朵花中,抗寒性强弱为花瓣>雄蕊>雌蕊;未接种冰核细菌的花比接菌的抗寒性强。-3℃低温处理后,各品种的子房显微结构均受到不同程度的破坏。  相似文献   
9.
10.
Aciculosporium take (Ascomycota; Clavicipitaceae) is a causal agent of witches' broom of bamboo plants. The symptoms of this disease are believed to be induced by plant hormones, particularly auxins. Indole-3-acetic acid (IAA) was identified in cultures of this fungus in an l-tryptophan-supplemented liquid medium. IAA production was confirmed on 30 isolates of A. take from various hosts and locations at levels up to 1 mg/l. The biosynthetic pathway of IAA in A. take culture was examined by analyzing intermediate products and by feeding experiments. The results showed that the indole-3-pyruvic acid pathway (l-tryptophan → indole-3-pyruvic acid → indole acetaldehyde → IAA) was the dominant pathway in A. take. Received: June 3, 2002 / Accepted: July 25, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号