首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6752篇
  免费   314篇
  国内免费   6篇
林业   2405篇
农学   84篇
基础科学   16篇
  548篇
综合类   447篇
农作物   255篇
水产渔业   229篇
畜牧兽医   2605篇
园艺   120篇
植物保护   363篇
  2021年   53篇
  2020年   81篇
  2019年   59篇
  2018年   70篇
  2017年   81篇
  2016年   70篇
  2015年   74篇
  2014年   120篇
  2013年   271篇
  2012年   208篇
  2011年   238篇
  2010年   174篇
  2009年   166篇
  2008年   216篇
  2007年   204篇
  2006年   206篇
  2005年   241篇
  2004年   256篇
  2003年   234篇
  2002年   187篇
  2001年   86篇
  2000年   82篇
  1999年   62篇
  1997年   69篇
  1996年   94篇
  1995年   69篇
  1994年   70篇
  1993年   84篇
  1992年   104篇
  1991年   82篇
  1990年   80篇
  1989年   71篇
  1988年   72篇
  1987年   61篇
  1986年   60篇
  1984年   62篇
  1983年   69篇
  1982年   71篇
  1981年   114篇
  1980年   64篇
  1979年   107篇
  1978年   56篇
  1953年   61篇
  1938年   58篇
  1935年   51篇
  1934年   52篇
  1933年   53篇
  1932年   50篇
  1926年   74篇
  1925年   56篇
排序方式: 共有7072条查询结果,搜索用时 0 毫秒
1.
Trialcylglycerol (TG) lipase was isolated and partially purified from rainbow trout liver. Triacylglycerol lipase activity was assayed by measuring14C-oleic acid release from14C-triolein.14C-oleic acid release was linear for up to two hours. Optimal activity occurred at pH 7.0 and 15°C. Most of the lipase activity was recovered in the cytosolic fraction. A 27,000-fold purification was achieved after Sepharose (Bio-gel A 0.5 M, 200–400 mesh) chromatography of a resuspended 20% ammonium sulfate fraction. The molecular weight of the trout hepatic lipase as determined by size-exclusion chromatography and by SDS-polyacrylamide gel electrophoresis was 40–43 kD. Lipase-mediated hydrolysis of TG resulted in the production of diacylglycerols, monoacylglycerols, and fatty acids. Kinetic analysis indicated that Vmax=0.016 nmol/h/mg protein and that Km=0.28 mM triolein. Lipolytic activity was enhanced in the presence of cAMP/ATP-Mg2+. These results suggest that the liver of trout possesses a neutral TG lipase that is responsible for mobilizing stored TG and is catalytically activated by phosphorylation.A part of this work was presented at the Annual Meeting of the American Society of Zoologists, December 26–30, 1990, San Antonio, TX.  相似文献   
2.
3.
4.
Zusammenfassung Mit theoretischen Modellen kann die Effektivität verschiedener Ansätze (z. B. Fallenzahl und-abstand, Ködermenge und-abgaberate) für den Einsatz von synthetischen Pheromonen in Pest-Management-Systemen verglichen werden. Das GAUSS-sche Modell, das von einer Normalverteilung der Konzentrationsabnahme um eine Lockstoffquelle ausgeht, wurde benutzt, um fürT. lineatum die lockwirksame Reichweite und die Konkurrenzsituation von Naturköder und Falle abzuschätzen. Bei 100 000 /ha und 2 Wochen Flugdauer ergeben sich für (+)-Lineatin (Reaktionsschwelle 0,1 ng/m3, Produktion 6,43 ng//d, Produktionsdauer 3 d/) mittlere Tagesraten von 128,6 g/ha bzw. eine Gesamtproduktion von 1,929 mg/ha. Die lockwirksame Reichweite xmax beträgt je nach Wetterlag für 1T. lineatum- 20–40 cm, für Fallen mit 1 CONREL-Faser (Abgaberate 10 g/d [+]-Lineatin) 13–16m. Für eine 10fach höhere lockwirksame Reichweite sind nach dem Modell etwa 100fach, in der Praxis nach verschiedenen Autoren sogar 200fach stärkere Köder erforderlich.In Freilandversuchen über die Relation von Fangleistung und Beifängen unterschiedlicher Fangsysteme waren die Coleoptera (bes. Rhizophagidae und Staphylinidae) am häufigsten. In Trichterfallen lagen die Beifänge mit 9,2% deutlich höher als in Schlitzfallen (1,2%). Das Giftpolter hatte demgegenüber das größte Beifangspektrum; hier traten auch Ordnungen auf, die von anderen Fangsystemen nicht betroffen waren.Massenfang kan prinzipiell in Holzhöfen und Waldbeständen erfolgreich durchgeführt werden. Allerdings ist das Problem der Beifänge noch ungelöst und die Relations von potentieller Vermehrung der Borkenkäfer und maximal möglicher Populationsreduzierung durch Fallenfang unbekannt. Zudem kann eine nach Massenfang geringere Populationsdichte im Folgciahr durch zunehmende Reproduktionsraten oder durch ersatzweise Einnischung (competive displacement) anderer Borkenkäferarten ausgeglichen und damit der Forstschutzeffekt zunichte gemacht werden.
Bark beetle control: contribution of pheromone meteorology and population dynamics
The use of semiochemicals in pest management systems of bark beetles is viewed in relation to optimization of resources investment, comparing beetle numbers in univoltine, requisitegoverned woodboringTrypodendron lineatum (Oliv.) with multigeneration bark inhabitingIps typographus (L.). The efficiency of different numbers of and distance between traps and pheromone load of dispensers was analysed using steady state models and comparing results with published and own field data. Competition between traps and beetle-infested logs, attractive distance and overlap of pheromone plume was compared forT. lineatum using models which assume a GAUSS distribution of concentration decrease around a pheromone source. For (+)-lineatin (reaction threshold 0.1 ng/m3, production 6.43 ng//d, duration of production 3 d/), 100,000 /ha and a flight period of 2 weeks, daily mean production is 128.6 g/ha. Attractive distance xmax is 20–40 cm for 1T. lineatum- and 13–16 m for a trap with 1 CONREL-dispenser (mean release rate 10 g/d (+)-lineatin). A 10-fold increase of attractive distance xmax needs a 100-fold increase of pheromone release rate according to the model, and 200-fold according to field experiments.In field experiments, Coleoptera (esp. Staphylinidae and Rhizophagidae) were the most abundant non-target trap catches. Insecticide-treated trap logs had the widest range of non-target insects including orders that were not affected by the non-insecticide trapping systems. Mass trapping can be successful in logging areas and/or forests. However, the exclusion of non-target insects still is an unsolved problem and we still have only limited knowledge on potential population increase of beetles and maximum reduction that can be achieved by trapping. Also, population levels reduced by mass trapping can be compensated by increasing reproductive effort of the succeeding generation and/or competitive displacement by secondary bark beetle species.


Mit 5 Abbildungen und 2 Tabellen

Mit Unterstützung der Deutschen Forschungsgemeinschaft.

Nach einem Vortag bei der Fortbildungstagung des Hessischen Forstvereins in Solms/Lahn am 23. Mai 1991.

Herrn Prof. Dr. Dr.G. Wellenstein zum 85. Geburtstag.  相似文献   
5.
Predicted changes in average values of global climate variables (increased temperatures, altered precipitation patterns, increased concentrations of atmospheric CO2) and changes in the frequency, duration, and degree of extremes (frost, heat, drought, hail, storms, floods, etc.) will affect agricultural crops, agroecosystems, and agricultural productivity. Although forecasts of regional climate changes are still imprecise, mean temperature increases in Europe are expected to be greater in the north (2.5–4.5°C) than in the south (1.5–4.5°C). Regional forecasts for precipitation changes are also very far from precise; however, problems with drought are expected to increase, especially in Mediterranean countries. Overall, shortage of water will be the predominant factor affecting plant growth. As higher temperatures are known to enhance plant development and especially the grain-filling duration of cereals, grain yield losses are possible in a warmer climate. On the other hand, elevated atmospheric CO2 concentrations are known to stimulate photosynthesis and enhance growth and yield (“CO2 fertilization”); concomitantly, leaf transpiration is reduced, resulting in improved water use efficiency. Total biomass and yield were enhanced by 20–30% in experiments with elevated CO2 exposure (550–700 ppm) under more or less ideal growth conditions. Elucidating the interactions between positive and negative effects of climate change is of crucial importance for any prediction of future crop yields. The present paper is a brief summary mainly of the potential effects of elevated temperatures and atmospheric CO2 on crop growth, quality, and yield. Also, adaptation measures, possible interactive effects of different climate variables, and interactions of climate change components with other growth variables (pathogens, air pollutants) are briefly described.  相似文献   
6.
7.
8.
9.
10.
The carambola (Averrhoa carambola L., family Oxalidaceae) is believed to have originated in Sri Lanka and the Moluccas but it has been cultivated in southeast Asia and Malaysia for many centuries. The evergreen tree is slow-growing, has a rounded crown and reaches 6 to 9 m in height. The 5- to 6-angled fruits (6 to 15 cm long and up to 9 cm wide) have thin, waxy, orange-yellow skin and juicy, yellow flesh. The fruit has a more or less pronounced oxalic acid odor and the flavor ranges from very sour to middle sweetish. The carambola is a tropical and subtropical tree, it can tolerate freezing temperature (?2°C) for short periods and sustain little damage. Trees can be propagated by seed, grafting, budding, and air layering. Tissue culture propagation has met only limited success. Plant spacing varies with growing region and cultural practices. Tree training is practiced intensively in different countries. Harvest timing and postharvest handling are critical to successful marketing of fresh fruit. Carambola is a nonclimateric fruit. Growers carefully harvest fruit by hand at color break — light green fruit with yellow color. The storage conditions should be 5 to 10°C and 85 to 95% relative humidity. Most carambola fruit is eaten fresh, used in salads, desserts, and cooked as star-shaped slices; fruit can also be dried, canned and frozen. The leaves have been eaten as a substitute for sorrel. Commercial production occurs in Taiwan, Malaysia, southern China, the Philippines, Australia, USA (Florida, Hawaii), Brazil, Suriname and Guyana. Production and consumption appears on the rise throughout the world and will most likely increase as selection and breeding for superior tasting cultivars with improved handling characteristics and storage conditions are found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号