排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析;并通过竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)过滤冗余变量,筛选与叶片含水量相关性较好的波长变量,作为优选变量集;通过粒子群算法(particle swarm optimization,PSO)对BP神经网络模型进行优化,构建冠层叶片含水量预测模型并进行分析。结果表明,从尺度1到尺度10,小波系数与冬小麦叶片含水量整体相关性先升后降,中等分解尺度在光谱波段去除噪声、提高相关性方面最佳;基于CARS优选变量集所建的两种模型中,BP-PSO模型预测能力明显优于普通BP神经网络模型,其决定系数可达0.82,均方根误差为0.86%,相对误差为0.82%。这说明CWT-CARS-BP-PSO耦合算法在提升相关性、过滤冗余波段、提高模型预测精度方面效果显著,可用于冬小麦叶片含水量预测。 相似文献
2.
为实现陕西关中地区夏玉米叶片含水率遥感估算,本研究通过夏玉米叶片高光谱反射率和含水率的测定,利用原始光谱及转换光谱,构建任意两波段的光谱指数,分析光谱指数与叶片含水率之间的关系,构建玉米叶片含水率估算的单因素回归模型和基于支持向量回归算法(SVR)、反向传播神经网络回归算法(BPNN)和麻雀搜索随机森林回归算法(SSA-RFR)的多因素模型,并根据模型精度筛选玉米叶片含水率估算的优化模型。结果表明,随叶片含水率的增加,短波红外波段的光谱反射率降低,最优光谱指数的构成波段主要位于短波红外波段,其中基于一阶导数光谱的比值光谱指数(R1 563/R1 406)和归一化光谱指数[(R1 563-R1 406)/(R1 563+R1 406)]与叶片含水率相关性最佳,其相关系数绝对值均达0.83;多因素回归模型的模拟效果优于单因素回归模型,基于麻雀搜索随机森林回归模型的精度最高,验证集决定系数(R2)为0.78,均方根误差(RMSE)和相对误差... 相似文献
3.
叶绿素含量能有效表征植物光合作用强度,是反映植物生长状况的重要参量之一。以秦岭北麓壮果期猕猴桃叶片为研究对象,分别测定其叶绿素含量和光谱反射率,通过分析380~1 000 nm范围内高光谱参数与叶绿素含量的相关性,筛选出估测模型的输入特征,选择随机森林、极限梯度提升树、K-近邻、LightGBM算法和岭回归作为基模型,线性回归作为元模型,建立基于Stacking集成学习的猕猴桃叶片叶绿素含量估算模型,并通过网格搜索和交叉验证提高模型泛化能力,将Stacking模型与多个单一模型进行比较。结果表明:(1)不同叶绿素含量的猕猴桃叶片高光谱反射率变化趋势基本一致,在380~1 000 nm范围内呈现“一峰两谷一平台”的特点;(2)各高光谱参数与猕猴桃叶片叶绿素含量相关性较好,优化光谱指数和传统光谱指数中与叶绿素含量相关性最高的分别是比值光谱指数(RSI′581,438,r=0.947)和红边位置(r=0.914);(3)与多个单一模型相比,Stacking集成模型的估算精度最高(R2=0.807,MAE=0.334,RMSE=0.136),同时,其... 相似文献
4.
以夏玉米为研究对象,基于无人机高光谱数据和野外玉米冠层叶片实测SPAD值,以0.2阶为步长,计算光谱0~2阶分数阶微分,分析其与玉米冠层实测SPAD值之间相关性,筛选相关系数绝对值前10波段为特征波段组合,构建并比较玉米冠层叶片SPAD值的支持向量回归模型(SVR)、反向传播神经网络模型(BPNN)和麻雀优化算法随机森林模型(SSA-RFR)。结果表明,经分数阶微分变换可显著提高与SPAD值相关性,其中以0.6阶698 nm处相关系数绝对值最大;基于分数阶微分模型整体精度高于整数阶模型,其中基于分数阶微分的SSARFR模型精度最高,R2为0.706,较整数阶提高32.46%,RMSE和MRE分别为2.444和3.579%,较整数阶降低13.46%和12.95%。 相似文献
1