全文获取类型
收费全文 | 40374篇 |
免费 | 15174篇 |
国内免费 | 513篇 |
专业分类
林业 | 3286篇 |
农学 | 2379篇 |
基础科学 | 2620篇 |
24377篇 | |
综合类 | 16494篇 |
农作物 | 1136篇 |
水产渔业 | 59篇 |
畜牧兽医 | 1826篇 |
园艺 | 547篇 |
植物保护 | 3337篇 |
出版年
2025年 | 814篇 |
2024年 | 1808篇 |
2023年 | 2050篇 |
2022年 | 1899篇 |
2021年 | 1894篇 |
2020年 | 2009篇 |
2019年 | 2222篇 |
2018年 | 1824篇 |
2017年 | 2493篇 |
2016年 | 2881篇 |
2015年 | 1996篇 |
2014年 | 2262篇 |
2013年 | 3197篇 |
2012年 | 4010篇 |
2011年 | 2917篇 |
2010年 | 2295篇 |
2009年 | 2349篇 |
2008年 | 2116篇 |
2007年 | 2301篇 |
2006年 | 2000篇 |
2005年 | 1688篇 |
2004年 | 1295篇 |
2003年 | 1125篇 |
2002年 | 881篇 |
2001年 | 850篇 |
2000年 | 731篇 |
1999年 | 535篇 |
1998年 | 470篇 |
1997年 | 489篇 |
1996年 | 415篇 |
1995年 | 438篇 |
1994年 | 406篇 |
1993年 | 305篇 |
1992年 | 258篇 |
1991年 | 253篇 |
1990年 | 178篇 |
1989年 | 155篇 |
1988年 | 95篇 |
1987年 | 76篇 |
1986年 | 41篇 |
1985年 | 13篇 |
1984年 | 6篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 4篇 |
1976年 | 1篇 |
1963年 | 1篇 |
1962年 | 5篇 |
1955年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
941.
Ren Reiser Viktor Stadelmann Peter Weisskopf Lina Grahm Thomas Keller 《植物养料与土壤学杂志》2020,183(3):316-326
Oxygen diffusion rate (ODR) and redox potential (EH) are quantitative indices representing oxygen availability and redox status in soils, which is valuable information for better understanding causes and effects of soil aeration. Because these indices are spatially and temporally highly variable, continuous measurements and adequate numbers of repetitions are essential for accurate in situ monitoring. Here, we present a new, fully automated recording system for in situ measurements where ODR and EH are measured at the same platinum electrode. The conflict between electrode polarization for ODR and the resulting biased EH readings is solved by reducing the polarization time and introducing a recovery interval between two consecutive measurement cycles. The shorter polarization time ensures accurate EH readings. It also results in moderately overestimated ODR readings, but this can be corrected before data analysis. The recovery interval restricts temporal resolution of the EH‐ODR data pairs to 8 h. We illustrate the use of the system with measurements in a field experiment in Zürich, Switzerland. ODR curves at different depths ran roughly parallel to the corresponding curves of O2 concentration in soil air but ODR was much more sensitive to precipitation. Low ODR was a necessary but not a sufficient condition for declining EH. EH ran parallel to O2 concentration in soil air rather than to ODR. The fully automated system allows for time series of replicate measurements in multifactorial field studies with reasonable labor requirements. It may be particularly suitable for studies examining the effects of soil tillage, compaction, and irrigation, where structure‐related soil properties such as porosity, gas permeability, and soil aeration play a dominant role. 相似文献
942.
943.
Jéssyca D. L. Martins Adalton M. Fernandes 《Communications in Soil Science and Plant Analysis》2020,51(11):1525-1544
ABSTRACT The use of applied phosphorus (P) and the uptake of nutrients from the soil by plants can be improved when the fertilizer is combined with the application of humic substances (HS). However, these beneficial effects are inconsistent and can depend on the type of soil. This study was performed to evaluate the effects of the application of HS (0, 1.25, and 7.50 mL pot–1), as Humic HF®, and fertilizer-P (10, 50, 100, and 200 mg P dm–3), as triple superphosphate, on root morphological characteristics, dry matter accumulation, nutrient uptake, and tuber yield of potatoes grown in sandy and clayey soils. Only under low P supply in the sandy soil did the supply of HS, at the rate of 1.25 mL pot–1, increase the plant growth, yield of tubers, and uptake of macronutrients by the plants, without affecting the efficiency of the P fertilization. In the clayey soil, which had a higher organic matter content, the application of HS did not affect plant growth, tuber yield or nutrient uptake. In both soils, P fertilization increased plant growth, tuber yield, and nutrient uptake. The combined application of HS and P increased the root length of potatoes in sandy soil. 相似文献
944.
ABSTRACTAccording to traditional biogeographic theory, historical contingency can influence soil microbial communities. Thus, we ask: are historical contingencies (soil profiles and geographic sampling locations), or other factors (seasonal changes and soil nutrients), important drivers of soil bacterial communities? This study used high throughput sequencing technology to investigate the soil bacterial compositions of rubber plantations at the local and geographic scales. Significant differences were detected in bacterial compositions between two study locations, Xishuangbanna and Hainan Island. Redundancy analysis showed that the most important factor driving bacterial composition was site location and total nitrogen, which explained 38.2 and 38.4% the total variance, respectively; this indicates that historical contingencies drive distinct bacterial communities in rubber plantation soils. At the local scale, there were also distinct differences in soil bacterial compositions between the dry and rainy season in both the Xishuangbanna and Hainan sites. Seasonal changes explained 13.6 and 41.4% of the total variation of soil bacterial composition in Xishuangbanna and on Hainan Island, respectively, whereas other factors had little effect on soil bacterial communities (p < 0.001). In conclusion, our results demonstrate that historical contingencies drive variation in bacterial composition at the geographic scale, whereas seasonal changes influence variation at the local scale. 相似文献
945.
Subham Mukherjee Jagdeep Singh Bhupinder Pal Singh 《Archives of Agronomy and Soil Science》2020,66(6):778-791
ABSTRACTThermo-chemical conversion of crop residues to produce biochar is an emerging strategy in the context of sustainable phosphorous (P) use and residue management. An incubation study for 90 d was conducted to investigate the effects of rice-residue biochar (0, 10, 20 and 40 g kg?1) in combination with inorganic-P (KH2PO4) (0, 25 and 50 mg kg?1) on phosphorous availability in medium- and high-P status soils. Increasing biochar addition rates alone or in combination with inorganic-P resulted in a significant increase in P pools, i.e. plant available P or Olsen-P (from 8 to 132 mg kg?1 in medium-P and 15 to 160 mg kg?1 in high-P soils), microbial biomass P and various mineral-bound inorganic-P fractions in the order (Ca-P > organic-P > Al-P > loosely held/soluble-P > Fe-P > reductant soluble-P). Further, lower phosphatase activity (19–50%) with increasing rates of biochar addition in both soils elucidates the ability of biochar to act as a long-term source of available P in the experimental soils. The results demonstrate that rice-residue biochar can directly or indirectly enhance the status of available P in soils and hence can be used as a beneficial amendment to meet the crop P demand. 相似文献
946.
《Communications in Soil Science and Plant Analysis》2012,43(15-20):2185-2198
Abstract The networks of 15 international research centers around the globe that are sponsored by the Consultative Group for International Agricultural Research (CGIAR) seeks to alleviate poverty in the developing world through enhanced production, while maintaining biodiversity and the sustainability of natural resources. The mandate of the International Center for Agricultural Research in the Dry Areas (ICARDA) is to focus on improving semi‐arid cropping systems in the drought‐prone West Asia and North Africa region. Since its inception in 1997, ICARDA's soil laboratory played a pivotal role in backstopping the institution's on‐station and on‐farm research in Syria and its collaborative research with the region's national programs. This article gives an overview of the evolution of soil and plant analysis in serving the center's mission. A major effort was the regional soil test calibration program, which set the basis for rational use of fertilizers and the identification of related nutrient constraints. Such analyses were extensively employed in all the long‐term dryland cropping system trials and later in irrigated agriculture and the interface between plant nutrition and crop breeding. Major emphasis was given to improving and upgrading analytical services in the region's laboratories. Despite advances made in analytical methodology, the challenge is to apply to solving real problems in the service of humanity. 相似文献
947.
《Communications in Soil Science and Plant Analysis》2012,43(15-20):2423-2446
Abstract Winter wheat shoot weight and phosphorus (P) concentrations, corn leaf weight and P concentrations, and soil AL, Olsen, H2O, Bray 1, Pi (Fe-oxide impregnated paper strip) and AERM (anion exchange resin membrane) contents were determined in a network of uniform Hungarian national long‐term field trials. P application had a significant effect on soil P test values at different P levels and sites. The relationship between the different soil P test methods was studied separately for different soil groups (all, acid, and calcareous soils). Corn leaf weight was influenced by the sites much more than by soil P supply level, whereas corn leaf P percentage was influenced by both sites and P levels. For winter wheat, both sites and soil P levels had a positive effect on wheat shoot weight. Wheat shoot P percentage was influenced by the soil P supply much more than by the sites. Correlation between corn leaf P percentage and the Pi or AERM extractable P and between wheat shoot P percentage and the Pi and AERM P values was logarithmic. 相似文献
948.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):1353-1370
Abstract Heavy‐metal concentration in underground and surface water, soil, and crop plants growing in farmers' fields near the industrial city of Ludhiana, Punjab, India, that receive irrigation with water contaminated with sewer and untreated industrial effluents was studied. The concentrations of lead (Pb), chromium (Cr), cadmium (Cd), and nickel (Ni) in sewage‐contaminated water were 18, 80, 88, and 210 times higher than in shallow handpump water, and 21, 133, 700, and 2200 times higher than in deep tube‐well water, respectively. The concentrations of Cd and Ni in shallow handpump underground water were significantly higher than in deep tube‐well underground water. The concentrations of Pb, Cr, Cd, and Ni in deep tube‐well water were 0.017, 0.003, 0.0002, and 0.0002 mg L?1, respectively. Soils irrigated with sewage‐contaminated water had higher electrical conductivity, cation exchange capacity, organic carbon (C), and clay content but had lower pH and calcium carbonate content compared to soils irrigated with deep underground water. The concentrations of diethylenetriamine pentaacetic acid (DTPA)–extractable Pb, Cr, Cd, and Ni in soils irrigated with sewage‐contaminated water were 1.8, 35.5, 3.6, and 14.3 times higher, and total concentrations of these heavy metals were 1.5, 3.0, 3.7, and 2.2 times higher than that in soils irrigated with deep underground water. The mean concentrations of Pb, Cr, Cd, and Ni in crop plants growing on soils irrigated with sewage‐contaminated water were 4.88, 4.20, 0.29, and 3.99 mg kg?1, which were 1.2, 2.1, 8.7, and 1.9 times higher than in plants irrigated with deep tube‐well water, respectively. The amounts of potentially toxic metals were significantly and positively correlated with cation exchange capacity and organic C content and negatively correlated with soil pH. In conclusion, long‐term accumulation of toxic metals in soils and their uptake by crop plants has a high potential for phytotoxicity as well as for entering into the food chain. The findings also suggest contamination of underground shallow drinking water through leaching of some highly mobile metals. 相似文献
949.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1041-1055
Abstract Rice is a plant that requires high levels of silica (Si). As a silicate (SiO2) source to rice, coal fly ash (hereafter, fly ash), which has an alkaline pH and high available silicate and boron (B) contents, was mixed with phosphor‐gypsum (hereafter, gypsum, 50%, wt wt?1), a by‐product from the production of phosphate fertilizer, to improve the fly ash limitation. Field experiments were carried out to evaluate the effect of the mixture on soil properties and rice (Oryza sativa) productivity in silt loam (SiL) and loamy sand (LS) soils to which 0 (FG 0), 20 (FG 20), 40 (FG 40), and 60 (FG 60) Mg ha?1 were added. The mixture increased the amount of available silicate and exchangeable calcium (Ca) contents in the soils and the uptake of silicate by rice plant. The mixture did not result in accumulation of heavy metals in soil and an excessive uptake of heavy metals by the rice grain. The available boron content in soil increased with the mixture application levels up to 1.42 mg kg?1 following the application of 60 Mg ha?1 but did not show toxicity. The mixture increased significantly rice yield and showed the highest yields following the addition of 30–40 Mg ha?1 in two soils. It is concluded that the fly ash and gypsum mixture could be a good source of inorganic soil amendments to restore the soil nutrient balance in rice paddy soil. 相似文献
950.
《Communications in Soil Science and Plant Analysis》2012,43(17-18):2639-2657
Soil and plant analysis has been a major contribution to the development of the agricultural sciences and indirectly to sustaining mankind. The advances that have occurred in the various disciplines in soil science, agronomy, and crop science would have been impossible without parallel advances in analytical technology. Despite the many divisions in the journals of the Soil Science Society of America, Crop Science Society of America, and American Society of Agronomy, none is solely devoted to the discipline of analysis of soils and plants and related areas. However, the Soil and Plant Analysis Council (SPAC) fills that critical void because it is an international society of scientists, educators, and private and public organizations with a common interest in promoting analysis of soils, plants, water, manure, and fertilizers. The primary emphasis is on nutrients in relation to crop production and increasing environmental issues. The main goal of SPAC is to provide leadership in the development and dissemination of methodology, interpretation, and application of analysis for efficient resource management and environmental protection. Its activities include publications (methods handbooks, symposia and workshop proceedings, newsletter), liaising with national agencies and commercial organizations to standardize and improve analytical procedures, maintenance of a laboratory directory, and holding international symposia. The Council has played a significant role in expanding the breadth, depth, and scope of analytical technologies in North America as well as internationally. 相似文献