首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39847篇
  免费   15831篇
  国内免费   410篇
林业   3286篇
农学   2379篇
基础科学   2620篇
  24400篇
综合类   16494篇
农作物   1139篇
水产渔业   59篇
畜牧兽医   1826篇
园艺   548篇
植物保护   3337篇
  2025年   833篇
  2024年   1808篇
  2023年   2050篇
  2022年   1899篇
  2021年   1894篇
  2020年   2009篇
  2019年   2222篇
  2018年   1824篇
  2017年   2493篇
  2016年   2881篇
  2015年   1996篇
  2014年   2262篇
  2013年   3197篇
  2012年   4010篇
  2011年   2917篇
  2010年   2297篇
  2009年   2350篇
  2008年   2121篇
  2007年   2301篇
  2006年   2000篇
  2005年   1688篇
  2004年   1295篇
  2003年   1125篇
  2002年   881篇
  2001年   850篇
  2000年   731篇
  1999年   535篇
  1998年   470篇
  1997年   489篇
  1996年   415篇
  1995年   438篇
  1994年   406篇
  1993年   305篇
  1992年   258篇
  1991年   253篇
  1990年   178篇
  1989年   155篇
  1988年   95篇
  1987年   76篇
  1986年   41篇
  1985年   13篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1976年   1篇
  1963年   1篇
  1962年   5篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
591.
Profiles of semi-arid-zone soils in Punjab, northwestern India, were investigated for different forms of copper (Cu), including total Cu, diethylenetriaminepentaacetic acid (DTPA)–extractable Cu, soil solution plus exchangeable Cu, Cu adsorbed onto inorganic sites, Cu bound by organic sites, and Cu adsorbed onto oxide surfaces. When all soils were considered, total Cu content ranged from 7 to 37 mg kg?1, while DTPA-extractable and soil solution plus exchangeable Cu contents ranged from 0.30 to 3.26 mg kg?1 and from 0.02 to 0.43 mg kg?1, respectively. Copper adsorbed onto inorganic sites ranged from 0.62 to 2.6 mg kg?1 and that onto oxide surfaces ranged from 2.0 to 13.2 mg kg?1. The Cu bound by organic sites ranged from 1.2 to 12.2 mg kg?1. The magnitudes of different forms of Cu in soils did not exhibit any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Cu. The content of all forms of Cu was generally greater in the fine-textured Alfisols and Inceptisols than coarse-textured Entisols. Soil solution plus exchangeable Cu, Cu held onto organic sites, and and Cu adsorbed onto inorganic sites (crystalline) had significant positive correlations with organic carbon and silt contents.The DTPA Cu was positively correlated with organic carbon, silt, and clay contents. Total Cu content strongly correlated with silt and clay contents of soils. Among the forms, Cu held on the organic site, water soluble + exchangeable Cu, and Cu adsorbed onto oxide surface were positively correlated with DTPA-extractable Cu. The DTPA-extractable Cu and soil solution plus exchangeable Cu seems to be good indices of Cu availability in soils and can be used for correction of Cu deficiency in the soils of the region. The uptake of Cu was greater in fine-textured Inceptisols and Alfisols than coarse-textured Entisols. Among the different forms only DTPA-extractable Cu was positively correlated with total uptake of Cu.  相似文献   
592.
Chen  Feng  Kissel  David E.  West  Larry T.  Adkins  W.  Clark  Rex  Rickman  Doug  Luvall  J. C. 《Precision Agriculture》2004,5(1):7-26
The surface soil clay concentration is a useful soil property to map soils, interpret soil properties, and guide irrigation, fertilizer, and agricultural chemical applications. The objective of this study was to determine whether surface soil clay concentrations could be predicted from remotely sensed imagery of bare surface soil or from soil electrical conductivity for a 115 ha field located in Crisp County, Georgia. The soil clay concentrations were determined for soil samples taken at 28 field locations. Three different data sources–an aerial color photograph image, two infrared bands from an ATLAS data set, and the electrical conductivity of the surface soil layer were used in the research. Principal components analysis was applied to the color photograph image, whereas the ratio of two infrared bands was applied to the ATLAS data set. Filtering was applied to both resulting images. The distribution of soil electrical conductivity was derived from the measured soil electrical conductivity data by spatial analysis. Statistical relationships between soil clay concentrations and the principal component 3, the ratio of two ATLAS infrared bands, and the soil electrical conductivity were analyzed, and three linear equations were derived with r 2 values 0.83, 0.52, and 0.78, respectively. The distribution of the soil clay concentrations was derived based on these three equations. Six levels of soil clay concentrations were classified in these three methods, and the advantages and disadvantages were discussed. The predicted and measured soil clay concentrations, based on additional soil samples from 30 field locations, were compared using linear regression (r 2=0.76, 0.45, and 0.77 for the three methods). The overall accuracy for these methods were 84%, 66%, and 76%, respectively. The principal components method had the highest accuracy in our research, while the result for the depressional areas is the best from the ratio method.  相似文献   
593.
    
Several methods are used for the extraction of soil solution. The objective of this study was to find out to what extent the different extraction methods yield complementary or equivalent information. Soil solutions were sampled once at 10 different forest sites in Germany, with 4 sampling points per site, using 5 different extraction methods. Concentrations of the major ions in the 1:2 extracts and the equilibrium soil‐pore solutions (obtained from percolation of field‐fresh soil cores) were generally lower than in desorption solutions, suction‐cup solutions, and saturation extracts. Surprisingly, the latter three methods generally yielded equivalent results. However, possible systematic differences between these methods could have been masked by the high small‐scale spatial variability within the sites.  相似文献   
594.
The appropriate tissue and sampling time for the Greek wine-grape variety ‘Agiorgitiko’ nutritional diagnosis was to be evaluated by relating leaf tissue nutrient contents with the yield and must potassium (K), pH, total soluble solids (TSS), and titratable acidity (TA). At bloom, véraison and harvest, leaves opposite the basal cluster (LOBC) and youngest mature leaves (YML) were harvested, and soil and berry samples were collected from six vineyards in Nemea, Greece. Petiole K concentration of the LOBC was found to be better correlated with the yield, TSS, TA and must K than the blade or whole leaf K content; the contrary was observed in nitrogen (N), phosphorus (P), calcium (Ca), and magnesium (Mg) concentrations. The LOBC reflected better the nutritional status of the variety compared to the YML. Regarding the sampling time, petiole K presented stronger correlations with yield and must K, TSS, TA at harvest whereas N and P at bloom and véraison.  相似文献   
595.
    
Although crop residue management is known to affect near‐surface soil physical quality, little is known about the temporal variability of these indicators over short time intervals. This study evaluates the temporal changes of nine indicators of soil physical quality. These are organic carbon content, structural stability index, bulk density, macroporosity, air capacity, relative field capacity, plant available water capacity, Dexter's S‐index and saturated hydraulic conductivity. A second set of soil physical indicators, based on the distribution of soil pore volume, was also evaluated. The indicators were determined in three different times during the growing cycle of winter durum wheat cultivated within a long‐term field research carrying out in Southern Italy and comparing two types of crop residue management, that is, burning (B) and soil incorporation (I). Only the bulk density changed over time for both treatments, although the air capacity also changed for the incorporation of wheat residues. Residual effects of the autumnal soil tillage and soil compaction were a common source of variability, irrespective of which treatment was used. Based on the existing guidelines for evaluating the physical quality of these agricultural soils, optimal or near‐optimal values were detected in about half of the cases under consideration. This suggests that both B and I create sufficiently good conditions for crop growth during the crop cycle. The comparison between observed and optimal soil pore distribution function was always poor. The pore volume distributions showed lower densities of small pores and relatively higher densities of large pores than the proposed optimal distribution. This study also suggests that the considered optimal or references curves probably cannot be applied successfully to a wide range of agricultural soils.  相似文献   
596.
    
Global water scarcity and salinity of irrigated lands remain a concern. Shallow groundwater tables, often present in irrigation areas, may serve as energy‐efficient water sources, but they may also restrict leaching. This study quantified the salinity effects on water use and grain yield of irrigated malt barley in the presence of a shallow groundwater table. A lysimeter experiment was conducted over two seasons on sandy and sandy loam soils in Bloemfontein, South Africa. A Cocktail barley cultivar was irrigated with five irrigation water quality levels (ECi), i.e. control (1.5), 4.5, 6, 9 and 12 dS m−1. Salinity of the constant (1.2 m) groundwater table corresponded to ECi. Saline irrigation water had cumulative depressive effect on evapotranspiration, groundwater table depletion and grain yield as well as water productivity. Increasing ECi from the control to 12 dS m−1 reduced grain yield by 91 and 89% for the sandy and sandy loam soil, respectively, in the second season. The relationship between grain yield and salinity was dynamic (R2 = 0.8) and more sigmoidal than linear. Given the fluctuating nature of shallow groundwater and its close association with periodic waterlogging, revision of salinity threshold values and yield–salinity relationships for major cash crops remains critical. © 2019 John Wiley & Sons, Ltd.  相似文献   
597.
    
Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 “Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources” were added to provide up‐to‐date flux‐based information. Nitrogen (N) additions increase the release of water‐transportable P forms. Most P found in percolates and pore waters belongs to the so‐called dissolved organic P (DOP) fractions, rich in orthophosphate‐monoesters and also containing some orthophosphate‐diesters. Total solution P concentrations range from ca. 1 to 400 µg P L?1, with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40–100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m?2 a?1, suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem‐based assessments of dissolved and colloidal P fluxes within and from temperate forest systems.  相似文献   
598.
麦棉套种膜上灌溉节水增产机理研究   总被引:6,自引:0,他引:6       下载免费PDF全文
试验研究采用麦棉套膜上灌——土壤水分——作物——农田小气候理论体系,测定膜上灌灌水条件下的水流特征和土壤水分循环特点,麦棉共生期作物生育特性和农田小气候的相互关系。揭示出麦棉套膜上灌和棉花膜上灌分别节水29%和47%,小麦增产3.8%及棉花增产11.8%的节水增产机理  相似文献   
599.
    
Aluminum toxicity, nutrient imbalance, and reduced microbial activity are the most limiting factors for optimum agronomic productivity in acid soils. A field study was conducted to investigate the impact of micronutrient and liming on soil properties and productivity of groundnut-rapeseed system in an acidic Inceptisol. The impact of six micronutrient (control or no micronutrient, Zn at 5 kg ha−1, B at 1 kg ha−1, Mo at 0.5 kg ha−1, Zn + Mo, and Zn + B + Mo) and two soil amendment (furrow liming at 500 kg ha−1 and no lime addition) treatments were first tested in groundnut and theirs residual effects were assessed on soil properties of succeeding rapeseed crop. Results indicated that liming significantly improved soil pH, soil organic carbon (SOC), available N, P and K, and diethylene triamine penta acetate (DTPA)-extractable micronutrients, soil microbial biomass C and dehydrogenase activity as compared to no-lime. After harvesting groundnut, Mo + Zn + B treated plots maintained the highest SOC content, whereas sole B and Mo treatment had the highest SOC content after harvesting rapeseed. Further, Mo + Zn + B treated plots showed higher contents of soil DTPA-extractable micronutrients as compared to others. The highest groundnut equivalent yield (GEY) of the cropping system (pooled data of 2 years) was obtained with Mo + Zn + B (2.12 Mg ha−1) but remained at par with Zn + Mo (2.02 Mg ha−1). Multivariate principal component analysis indicated that available P was the most prominent soil nutrient with a strong effect on GEY. The results indicated that integrated application of Zn + B + Mo along with liming improves soil properties and agronomic productivity of groundnut-rapeseed cropping system.  相似文献   
600.
  总被引:2,自引:0,他引:2  
Soil modification via biopedturbation by burrow-building seabirds was examined in a Mediterranean, island ecosystem. Physical and chemical soil properties were compared between a colony of Wedge-tailed Shearwaters (Puffinus pacificus) and adjacent heath across a 14-month period. When compared to heath soil, the biopedturbated soil was 28% drier (6.04±5.40 vol%), had increased bulk density (by 29% to 1.30±0.11 g cm−3, 51% porosity), wetting capacity (by 83% to 0.55±0.83 molarity of ethanol droplet), hydraulic conductivity (by 266% to 398.91±252.04 mm h−1), and a greater range in soil surface temperature (31.7±6.2 °C diurnally to 18.3±3.2 °C nocturnally). Soil penetration resistance was reduced by 26% at a depth of 0–100 mm (326.5±122.4 kPa) and by 55% at 500–600 mm (1116.8±465.0 kPa). Colony soil also had increased levels of nitrate (by 470%), phosphorous (118%), ammonium (102%), sulphur (69%), and potassium (34%), decreased levels of iron (by 50%) and organic carbon (61%), was more alkaline, and had a 78% greater conductivity. Shearwaters deposited guano at a rate of 234.4 kg ha−1 yr−1 (dry mass). Chemical analysis of guano equated this to 50.9, 5.7, 5.5, and 3.6 kg ha−1 yr−1 of nitrogen, potassium, sulphur, and phosphorous, respectively. Experimentally constructed burrows demonstrated that digging alone can alter physical and chemical soil factors, but that changes in the nutrient profile of colony soils are predominantly guano-driven. We argue that the physical impact of seabirds on soil should not be overlooked as a soil-forming and ecosystem-shaping factor in island ecosystems, and that biopedturbation can exert major bottom-up influences on insular plant and animal communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号