全文获取类型
收费全文 | 39929篇 |
免费 | 15724篇 |
国内免费 | 430篇 |
专业分类
林业 | 3286篇 |
农学 | 2379篇 |
基础科学 | 2620篇 |
24396篇 | |
综合类 | 16494篇 |
农作物 | 1138篇 |
水产渔业 | 59篇 |
畜牧兽医 | 1826篇 |
园艺 | 548篇 |
植物保护 | 3337篇 |
出版年
2025年 | 833篇 |
2024年 | 1808篇 |
2023年 | 2050篇 |
2022年 | 1899篇 |
2021年 | 1894篇 |
2020年 | 2009篇 |
2019年 | 2222篇 |
2018年 | 1824篇 |
2017年 | 2493篇 |
2016年 | 2881篇 |
2015年 | 1996篇 |
2014年 | 2262篇 |
2013年 | 3197篇 |
2012年 | 4010篇 |
2011年 | 2917篇 |
2010年 | 2297篇 |
2009年 | 2350篇 |
2008年 | 2116篇 |
2007年 | 2301篇 |
2006年 | 2000篇 |
2005年 | 1688篇 |
2004年 | 1295篇 |
2003年 | 1125篇 |
2002年 | 881篇 |
2001年 | 850篇 |
2000年 | 731篇 |
1999年 | 535篇 |
1998年 | 470篇 |
1997年 | 489篇 |
1996年 | 415篇 |
1995年 | 438篇 |
1994年 | 406篇 |
1993年 | 305篇 |
1992年 | 258篇 |
1991年 | 253篇 |
1990年 | 178篇 |
1989年 | 155篇 |
1988年 | 95篇 |
1987年 | 76篇 |
1986年 | 41篇 |
1985年 | 13篇 |
1984年 | 6篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 4篇 |
1976年 | 1篇 |
1963年 | 1篇 |
1962年 | 5篇 |
1955年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
461.
土壤持水力与盐含量的相关性 总被引:3,自引:0,他引:3
The soil moisture retention capability of Chao soil and coastal saline Chao soil in Shandong and Zhejiang provinces were measured by pressure membrane method. The main factors influencing soil moisture retention capability were studied by the methods of correlation and path analyses. The results indicated that < 0.02mm physical clay and soil salt content were the main factors influencing soil moisture retention capability. At soil suction of 30~50 kPa, the soil salt content would be the dominant factor. 相似文献
462.
《Communications in Soil Science and Plant Analysis》2012,43(13):1497-1509
Soil nutrient status is one of the most important constituents of land productivity. The research presented in this article is aimed at describing the influence of nitrogen, phosphorous, and potassium availability on crop yields across the major soil types of Hungary, under different climatic conditions. For this purpose, historical times series data from a 5-year period (1985–1989) regarding soil, land management, and crop yield of more than 80,000 fields, representing approximately 4 million ha of arable land, were statistically analyzed. The database was recently recovered from statistical archives stored in the format of digital records of the early 1980s and were used to study the productivity of major soil types for winter wheat cropping under balanced fertilizer input. Calculations were made to quantify the effects of soil nutrient levels. The evaluation was also performed for optimal and suboptimal climate conditions. Results show that the effect of nitrogen availability (as obtained from organic-matter content) had the largest influence on winter wheat yields. Up to a 26% difference in yields was observed, both on those soils with balanced material regimes and on those with leaching material regimes, under optimal climatic conditions. The effect of different levels of phosphorous was most significant under optimal climatic conditions on soils with balanced material regimes, reaching up to 17% difference between soils with very low and high phosphorous levels. The effect of different levels of potassium was the least significant in soils with balanced material regimes (maximum 8% difference among categories) and somewhat more pronounced in soils with leaching material regimes. Differences between the effects of nutrient levels due to climatic variation were also observed. According to our findings, stable production can be planned on croplands with average nutrient availability, regardless which of the two soil types they belong to. On the other hand, yield gap can be detected on fields with both low and high nutrient levels among optimal and suboptimal years, for all three nutrients [nitrogen–phosphorus–potassium (N–P–K)] of the analysis. Although our findings are based on historical data, most of the main relationships described are valid under current climatic and management conditions as well. 相似文献
463.
Thomas Steinmann Gerhard Welp Andreas Wolf Britta Holbeck Thomas Große‐Rüschkamp Wulf Amelung 《植物养料与土壤学杂志》2016,179(3):355-366
Past land‐use changes, intensive cropping with large proportions of root crops, and preferred use of mineral fertilizer have been made responsible for proceeding losses of soil organic C (SOC) in the plough layer. We hypothesized that in intensive agriculturally managed regions changes in SOC stocks would be detectable within a decade. To test this hypothesis, we tracked the temporal development of the concentrations and stocks of SOC in 268 arable sites, sampled by horizon down to 60 cm in the Cologne‐Bonn region, W Germany, in 2005 and in 2013. We then related these changes to soil management data and humus balances obtained from farmers' surveys. As we expected that changes in SOC concentrations might at least in part be minor, we fractionated soils from 38 representative sites according to particle size in order to obtain C pools of different stability. We found that SOC concentrations had increased significantly in the topsoil (from 9.4 g kg?1 in 2005 to 9.8 g kg?1 in 2013), but had decreased significantly in the subsoil (from 4.1 g kg?1 in 2005 to 3.5 g kg?1 in 2013). Intriguingly, these changes were due to changes in mineral‐bound SOC rather than to changes in sand‐sized organic matter pools. As bulk density decreased, the overall SOC stocks in the upper 60 cm exhibited a SOC loss of nearly 0.6 t C (ha · y)?1 after correction by the equivalent soil mass method. This loss was most pronounced for sandy soils [?0.73 t SOC (ha · y)?1], and less pronounced for loamy soils [?0.64 t SOC (ha · y)?1]; silty soils revealed the smallest reduction in SOC [?0.3 t SOC (ha · y)?1]. Losses of SOC occurred even with the overall humus balances having increased positively from about 20 kg C (ha · y)?1 (2003–2005) to about 133 kg C (ha · y)?1 (2005–2013) due to an improved organic fertilization and intercropping. We conclude that current management may fail to raise overall SOC stocks. In our study area SOC stocks even continued to decline, despite humus conservation practice, likely because past land use conversions (before 2005) still affect SOC dynamics. 相似文献
464.
采用野外调查和室内测试相结合的方法,研究了水分对栗钙土理化性质和杨树生长的影响.结果表明:由于过水林地比未过水林地具有较低的容重和土壤硬度、较高的土壤持水能力以及较高的有机质、全氮、全磷和有效氮含量,使得过水林地上杨树人工林的直径、树高和材积生长量、各级根系长度、根系总长度和根系总生物量整体上超过来过水林地. 相似文献
465.
The distributions of free oxides along profiles of some dry rice fields were set forth in the previous reports2,3,4,6), In this paper, the distribution of free oxides in dry rice field5) in polder lands of Kojima-Basin, Okayama pref. is reported. Localities, years elapsed since the planting of rice began in each field and the characteristic of soil profiles are given in Table 1. All the fields are dry rice fields except Soil A, and carry barley or wheat in winter season. Parent materials are similar in all horizons of all soils and rich in fine particles. Fine sands (0.2-0.02 mm) are mainly composed of quartz somewhat accompanied with feldspars, mica, augite and amphibolite. Clays (< 0.002 mm) are mainly composed of halloysite accompanied with a small proportion of montmorillonite. The structure develops well in all the soils. 相似文献
466.
In irrigated agriculture of arid and semiarid regions waterlogging coupled with salinity is a serious problem. Experimental evidence at several locations has led to the realization that subsurface drainage is an essential intervention to reverse the processes of land degradation responsible for the formation of waterlogged saline lands. This paper presents the results of a study conducted from 1995 to 2000 to evaluate the impacts of subsurface drainage on soil properties, groundwater‐table behaviour and crop productivity in a waterlogged saline area of 2200 ha. A subsurface drainage system was installed at 1·6 m depth with 60 m drain spacing covering an area of 1200 ha (23 blocks) during 1997–99 and compared with an undrained block of 1000 ha. Subsurface drainage facilitated the reclamation of waterlogged saline lands and a decrease in the soil salinity (ECe, dS m−1) that ranged from 16·0 to 66·3 per cent in different blocks. On average, 35·7 per cent decrease in salt content was observed when compared with the initial value. Provision of subsurface drainage controlled the water‐table below the root zone during the monsoon season and helped in bringing the soil to optimum moisture content for the sowing of winter crops. In the drained area, the increase in yields of different crops ranged from 18·8 to 27·6 per cent. However, in the undrained area the yield of different crops decreased due to the increased waterlogging and soil salinity problems. Overall the results indicated that investment in subsurface drainage is a viable option for reversing the land degradation of waterlogged saline lands in a monsoon climate. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
467.
《Communications in Soil Science and Plant Analysis》2012,43(15-20):2389-2409
Abstract The objective of the present study was to assess the ability of near infrared reflectance spectroscopy (NIRS) to analyze chemical soil properties and to evaluate the effects of different phosphorus (P) and potassium (K) fertilization rates on soil quality in different layers of a long‐term pasture. The NIRS calibrations were developed for humus, total Kjeldahl nitrogen (NKjeldahl), and several humic substances (HA1, “mobile” humic acids fraction; ΣHA, sum of humic acids; FA1, “mobile” fulvic acids; ΣFA, sum of fulvic acids, etc.) using soil samples of rather heterogeneous origin, collected during 1999–2003. Different spectral preprocessing and the modified partial least squares (MPLS) regression method were explored to enhance the relation between the spectra and measured soil properties. The equations were employed for the quality prediction of a sod gleyic light loam (Cambisol) in five PK fertilization treatments. The soil was sampled in 2000 and 2003 in three field replicates at depths of 0–10, 10–20, 20–30, and 30–50 cm, n=60 samples yr?1. The best coefficients of correlation, R2, between the reference and NIRS‐predicted data were as follows: for NKjeldahl, 0.965; humus, 0.938; HA1, 0.903; HA2, 0.905; HA3, 0.924; ΣHA, 0.904; and FA1, 0.911; and ΣFA, 0.885. Our findings suggest that it is feasible to use NIRS for the assessment of the effects of the inorganic PK fertilizer on the soil quality in different depths of a long‐term pasture. 相似文献
468.
选择了经济相对发达的珠江三角洲城市群中的典型中小城市的菜地和果园土壤进行调查取样,对16种PAEs(邻 苯二甲酸酯)化合物进行了检测,以研究其分布特征,并初步探讨了本区域的PAEs的污染控制问题。结果表明,在珠三角城市中,东莞土壤的PAEs含量最高,各地土壤中的PAEs平均含量依次为东莞〉深圳(珠海)〉中山(惠州);从珠三角城市菜地和果园的平均PAEs分布来看,东莞和深圳的菜地PAEs明显高于果园;珠海、中山和惠州菜地的平均PAEs与果园基本持平。16种PAEs类化合物在珠江三角洲不同城市的分布各异,东莞市果园和菜地土壤中有11种PAEs含量是采样的5个城市中最高的,表明东莞市土壤受到PAEs污染相对严重,并且值得关注的是东莞土壤中的HEP含量要远远高于其他PAEs化合物。虽然与国内外其他城市土壤相比,所取样调查的珠江三角洲城市土壤中的PAEs含量相对不高,但与美国土壤PAEs控制标准相比,珠三角城市果园和菜地土壤的PAEs主要表现为DEP和DnBP超标,这两类PAEs化合物应该成为重点的污染控制对象。 相似文献
469.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (P < 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars. 相似文献
470.
The possible horizontal transfer of transgenes is of great concern when the transgenic plants are released into the field. To test the possible transfer of nptⅡ of transgenic trees into soil bacteria, we have used a stool DNA preparation kit to isolate the DNA from the soils in the rhizospheres of two non- and eight transgenic Eucalyptus camaldulensis trees. All the samples have provided the corresponding PCR products in the amplification with bacterial 16S RNA specific sequences, which indicates that the quality of the isolated DNA is adequate for amplification. The nptⅡ specific band has been amplified in three soil samples from the transgenic trees and even treated with filtration before the DNA isolation. This indicates that nptlI DNA exists in the soil, although it is still unclear whether the DNA was in the soil particles, in the soil bacteria or in the Agrobaeterium contamination which was used for the E.camaldulensis transformation. Two approaches on isolation of bacterial DNA have been suggested for testing the possibility of this event in the future. 相似文献