首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40149篇
  免费   15451篇
  国内免费   463篇
林业   3286篇
农学   2379篇
基础科学   2620篇
  24377篇
综合类   16494篇
农作物   1138篇
水产渔业   59篇
畜牧兽医   1826篇
园艺   547篇
植物保护   3337篇
  2025年   814篇
  2024年   1808篇
  2023年   2050篇
  2022年   1899篇
  2021年   1894篇
  2020年   2009篇
  2019年   2222篇
  2018年   1824篇
  2017年   2493篇
  2016年   2881篇
  2015年   1996篇
  2014年   2262篇
  2013年   3197篇
  2012年   4010篇
  2011年   2917篇
  2010年   2297篇
  2009年   2349篇
  2008年   2116篇
  2007年   2301篇
  2006年   2000篇
  2005年   1688篇
  2004年   1295篇
  2003年   1125篇
  2002年   881篇
  2001年   850篇
  2000年   731篇
  1999年   535篇
  1998年   470篇
  1997年   489篇
  1996年   415篇
  1995年   438篇
  1994年   406篇
  1993年   305篇
  1992年   258篇
  1991年   253篇
  1990年   178篇
  1989年   155篇
  1988年   95篇
  1987年   76篇
  1986年   41篇
  1985年   13篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1976年   1篇
  1963年   1篇
  1962年   5篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
431.
本文调查了蛋鸡养殖场粪便产生量及处理利用现状等基本资料,选点采集养殖场配套龙眼园的土壤样品,通过分析测定有机质、全氮、全磷、铜、锌等指标,探讨了施用蛋鸡粪对龙眼园土壤质量的影响,并对龙眼园土壤环境现状进行评价。结果表明,该养殖场龙眼园土壤粪便当量负荷为19.14t·hm-2,未超过以氮计的土壤粪便当量负荷警戒值。四个季节施用蛋鸡粪的龙眼园土壤中有机质、全氮、全磷、铜、锌等指标均高于未施用蛋鸡粪的橡胶园土壤,但无显著差异;施用过蛋鸡粪的龙眼园土壤有机质、全氮、全磷、铜、锌全年平均含量分别为18.71g·kg-1、0.97g·kg-1、0.79g·kg-1、19.65mg·kg-1和43.05mg·kg-1,均显著高于未施用过蛋鸡粪的橡胶园土壤。四个季节龙眼园土壤和橡胶园土壤铜、锌单项污染指数均小于1,属于安全级别。由于龙眼园施用的蛋鸡粪仅占养殖场蛋鸡粪产生总量的2%,而且采用直接施用鲜鸡粪的方式,因此仍存在环境污染的隐患。本文所得结果可为评估蛋鸡养殖场环境污染风险及与果园结合的蛋鸡养殖模式的合理性提供依据。  相似文献   
432.
    
Abstract

The study investigated the response to five levels of potassium (K) fertilizer addition on tomato (Solanum lycopersicum L.) performance and soil bacterial communities by negative pressure irrigation (NPI) over two consecutive years. The application of K fertilization positively affected tomato performance under NPI, as indicated by increased yield, quality, growth, and nutrients’ contents of tomato compared with no K addition treatment. High-throughput sequencing of the rhizosphere soil revealed that K additions significantly affected in the bacterial diversity indices according to Chao1, Ace, and Shannon. K addition significantly increased the relative abundance of Gemmatimonadetes and decreased the level of Planctomycetes. There were very prominent increases in the levels of the genus Opitutus, but reduced the content of Sphingomonas and Bdellovibrio compared with no K addition treatment. Furthermore, application of 150?kg K ha?1 (K150) was considered to be beneficial for plant growth and rhizosphere bacterial diversity of tomato. The tomato yield under K150 was considerably increased by 58% and 47% compared with no K addition treatment in 2016 and 2017, respectively. The K150 showed the highest K fertilizer utilization efficiency compared with other K treatments, with K contribution rate and K agronomic efficiency reaching 36.7 and 62.9 as well as 32.0 and 53.6 in 2016 and 2017, respectively. Therefore, these findings also demonstrate that K application under NPI not only promotes yield and quality of tomato fruits but also positively affects the rhizosphere microbiome.  相似文献   
433.
    
ABSTRACT

Field experiment was conducted to evaluate the effect of corn straw derived-biochar (700 °C) applied at 0 (control), 10 (B1), 20 (B2) and 30 t ha?1 (B3) on water stable aggregate (WSA), mean weight diameter (MWD), total organic carbon (TOC) and total nitrogen (TN) in WSA fractions of Albic soil. Compared with control, WSA in > 2 mm fraction increased, by 40.8% and 51.5% (0–10 cm depth) in B1 and B3, respectively. B1, B2 and B3 (10–20 cm depth) increased by 55.2%, 69.6% and 62.4%, respectively. MWD increased by 34.4%, 21.6%, and 17.6% with B3 at 0–10 cm, 10–20 cm and 20–30 cm depths, respectively. TOC in the > 2 mm fraction increased by 28.6%, 22.1%, and 23.2% (0–10 cm depth) in B1, B2, and B3, respectively, TN in 2–0.5 mm fractions increased by 32.4%, 23.4% and 33.6% (0–10 cm depth); and in the 0.25–0.05 mm fractions increased by 14.8%, 19.8% and 18.7% (10–20 cm depth), in B1, B2 and B3, respectively. Our findings suggest biochar application at 30 t ha?1 could improve structural stability and sequestration of TOC and TN in Albic soils.  相似文献   
434.
    
ABSTRACT

The effects of straw retention on soil bacterial community structure, microbial function, and biochemical properties were assessed. Terminal restriction fragment length polymorphism (T-RFLP) and community-level physiological profile (CLPP) assays were used to assess the bacteria community structure and microbial function respectively. Treatments included straw removal with conventional tillage (CT), straw retention with conventional tillage (SRCT) and straw retention with no tillage (SRNT). SRCT and SRNT significantly (p < 0.05) increased soil organic carbon by 8.9% and 9.7%, and microbial biomass carbon by 44.7% and 330.8%, respectively, compared with CT. T-RFLP analysis indicated that straw retention had no favourable effect on soil bacterial diversity, and SRCT significantly (p < 0.05) decreased bacterial diversity compared to CT. Among the three treatments, SRNT had the highest activity of urease, invertase, cellulase, and β-glucosidase. SRCT significantly (p < 0.05) increased the activity of invertase and β-glucosidase compared to CT treatment. CLPP analysis showed that microbial functional diversity was significantly (p < 0.05) increased by straw retention. Enzyme activity and microbial functional diversity were not correlated with bacterial diversity. Therefore, according to this study, SRNT is a better farming practice because it improves soil fertility and biological quality.  相似文献   
435.
Abstract

Coal bed natural gas (CBNG) development in the Powder River (PR) Basin produces modestly saline, highly sodic wastewater. This study assessed impacts of wetting four textural groups [0–11%, 12–22%, 23–33%, and >33% clay [(g clay/100 g soil)×100%)] with simulated PR or CBNG water on water retention. Soils received the following treatments with each water quality: a single wetting event, five wetting and drying events, or five wetting and drying events followed by leaching with salt‐free water. Treated samples were then resaturated with the final treatment water and equilibrated to ?10, ?33, ?100, ?500, or ?1,500 kPa. At all potentials, soil water retention increased significantly with increasing clay content. Drought‐prone soils lost water‐holding capacity between saturation and field capacity with repeated wetting and drying, whereas finer textured soils withstood this treatment better and had increased water‐retention capacity at lower matric potentials.  相似文献   
436.
    
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   
437.
    
ABSTRACT

A 6-year field experiment was conducted at Maharashtra, India, from 2011 to 2017 on a silty clay soil, to study the impact of organic manure prepared from common weed Trianthema portulacastrurm Linn. on soybean-fodder maize crop system and soil organic carbon (SOC) sequestration. Organic manures were prepared from Trianthema as compost, vermicompost, dry leaf powder and were compared with application of Farm Yard Manure (FYM), chemical fertilizer treatment (NPK), and control. All treatments were repeated to same earlier treated plots every year for subsequent 6 years. Soil samples were analyzed before experiment and after harvesting of crops at the end of 6 years. All organic manures prepared from Trianthema and FYM increased SOC, nitrogen, phosphorus, and potassium content in the soil as compared to chemical fertilizer treatment and control. The overall increase in SOC content in the 0–60-cm soil depth in vermicompost treatment was 3.51 Mg C ha?1 as compared to control at the end of this 6 years experiment at the carbon sequestration rate of 585 kg ha?1 year?1. Preparation and use of different manures from Trianthema will increase the carbon sequestration in soil, a measure to mitigate global warming.  相似文献   
438.
    
ABSTRACT

Utilizing the proper techniques of plant residue composting can play a significant role in reducing the adverse environmental impacts of chemical fertilizers. Herein the effects of commercial poultry manure (CPM) and composted pistachio residues (CPR) on nutrient availability and saffron daughter corms behavior in a calcareous soil were evaluated as a greenhouse experiment based on completely randomized design arranged in factorial with three replicates. In this study, CPM rates (0, 3, 6, and 9 t ha?1) and CPR levels (0, 20, 40, and 60 t ha?1) were assigned as the first and the second experimental factors, respectively. From the results, CPM or CPR application caused a significant increase in small (≤5 g), mid (5.1–10 g) and large-sized (10.1–15 g) daughter corms number. The highest N (P) concentration in small, mid and large-sized daughter corms was recorded when 9 t ha?1 CPM was applied along with 60 t ha?1 CPR. Soil organic carbon content increased with increasing CPM or CPR levels. The same trend was also observed for soil available N, P, K, and electrical conductivity. By contrast, CPM or CPR levels caused a significant reduction in soil pH. According to the results, pistachio compost can be considered as an eco-friendly alternative to chemical fertilizers to improve soil fertility in saffron farms.  相似文献   
439.
    
Abstract

The technique of simultaneous quantitative determination of mineral N soil forms (nitrates, exchangeable and non‐exchangeable ammonium, and total amount of these compounds) and sample pretreatment for the analysis of 15N:14N ratio is suggested. The technique is based on the selective association of NH4 +‐ions into indophenol complex and subsequent ethyl‐acetate extraction of this complex from solution. The mineralization of indophenol is carried out in alkaline medium with simultaneous NH3 distillation into H2SO4 titrant. The application of given technique allows us to shorten significantly the time required for analysis and to increase the accuracy of analytical determination.  相似文献   
440.
    
Actinomycetes, Bacillus subtilis, and Bacillus thuringiensis were isolated from municipal–solid waste (MSW) compost, and different microbial liquid filtrates (MLF) were prepared. Sterile culture media with no microbes were used as their controls. The effects of MLF on soil nematode communities were examined in pot‐grown Festuca arundinacea Schreb. Fifteen genera of nematodes in background soil were identified, of which Helicotylenchus and Rotylenchus were dominant. The inoculation of MLF strongly affected the abundance and community structure of soil nematodes. Compared with their controls, lower total nematode numbers following MLF incorporation were found. Actinomycetes inoculation changed community structure of soil nematodes, transforming the dominant genera from Helicotylenchus and Rotylenchus into Cephalobus, Chiloplacus, and Aphelenchus. Actinomycetes incorporation resulted in a significant decrease of plant‐parasitic nematodes relative to control pots. Only plant‐parasitic and omnivorous‐predatory nematodes were found in treatments following B. subtilis inoculation, and Helicotylenchus, Rotylenchus were dominant genera with relative abundance of 76.2% and 14.3%, respectively. Although the dominant genera were still Helicotylenchus and Rotylenchus, B. thuringiensis inoculation led to a marked decrease in populations of plant‐parasitic nematodes and an increase in populations of fungivorous and bacterivorous nematodes relative to control. Shannon's diversity index (H′), evenness index (J′), richness index (SR), and Wasilewska index (WI) in pots treated with actinomycetes and B. thuringiensis filtrates were significantly higher than those of their controls, whereas significant lower dominance index (λ) in actinomycetes and B. thuringiensis treatments was observed than their controls. Plant growth was improved in the treatments inoculated with three microbes. The findings highlight that actinomycetes can most effectively suppress plant‐parasitic nematodes, increase community diversity, evenness, and richness, thus improving soil environment for turf growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号