全文获取类型
收费全文 | 42064篇 |
免费 | 14079篇 |
国内免费 | 842篇 |
专业分类
林业 | 3365篇 |
农学 | 2357篇 |
基础科学 | 2598篇 |
24421篇 | |
综合类 | 16785篇 |
农作物 | 1268篇 |
水产渔业 | 78篇 |
畜牧兽医 | 2174篇 |
园艺 | 585篇 |
植物保护 | 3354篇 |
出版年
2025年 | 792篇 |
2024年 | 1815篇 |
2023年 | 2055篇 |
2022年 | 1905篇 |
2021年 | 1917篇 |
2020年 | 2017篇 |
2019年 | 2265篇 |
2018年 | 1838篇 |
2017年 | 2533篇 |
2016年 | 2938篇 |
2015年 | 2029篇 |
2014年 | 2323篇 |
2013年 | 3250篇 |
2012年 | 4065篇 |
2011年 | 2995篇 |
2010年 | 2319篇 |
2009年 | 2400篇 |
2008年 | 2176篇 |
2007年 | 2333篇 |
2006年 | 2016篇 |
2005年 | 1720篇 |
2004年 | 1327篇 |
2003年 | 1139篇 |
2002年 | 907篇 |
2001年 | 868篇 |
2000年 | 743篇 |
1999年 | 553篇 |
1998年 | 485篇 |
1997年 | 500篇 |
1996年 | 430篇 |
1995年 | 456篇 |
1994年 | 422篇 |
1993年 | 329篇 |
1992年 | 268篇 |
1991年 | 256篇 |
1990年 | 181篇 |
1989年 | 160篇 |
1988年 | 101篇 |
1987年 | 78篇 |
1986年 | 40篇 |
1985年 | 13篇 |
1984年 | 6篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1976年 | 1篇 |
1963年 | 1篇 |
1962年 | 5篇 |
1955年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
721.
Nikki Baggaley Allan Lilly Kirsty Blackstock Karen Dobbie Adam Carson Fraser Leith 《Soil Use and Management》2020,36(1):19-26
Surface runoff, erosion, compaction and the leaching of potential pollutants from land can degrade the soil resource and damage the water environment, reducing crop yields, causing loss of valuable nutrients and organic matter, together with increasing flood risk. Increasingly, it is recognized that scientific information must be translated into practical tools to change practices and protect the soil and water resource. Working alongside agencies in Scotland, we applied a suite of simple, transparent, rule-based models to identify areas most at risk of exporting sediment and pollutants that may degrade water quality based on field-scale (1:25,000) soil maps. The maps have been used by Scottish Environment Protection Agency, Scottish Water and Scottish Government to assess soil risks to waters from field to regional scale. The work brought scientists together with policy makers, agencies and the water industry to pool their knowledge to apply these practical tools for decision-making. It highlights the need to apply existing knowledge to answer salient questions. All three examples described show that providing the right type of information, which is based on fundamental soils data, can directly influence the implementation of policies, investment and monitoring decisions and provide evidence in support of government. However, this requires both researchers and agency scientists to develop skills as knowledge brokers and to normalize the use of soil data in everyday agency settings. 相似文献
722.
Effects of Irrigation Patterns and Nitrogen Fertilization on Rice Yield and Microbial Community Structure in Paddy Soil 总被引:6,自引:0,他引:6
Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N fertilizer levels on the soil microbial community structure and yield of paddy rice were investigated in a pot experiment. The experiment was designed with four N levels of 0 (N0), 126 (N1), 157.5 (N2), and 210 kg N ha-1 (N3) under two irrigation patterns of continuous water-logging irrigation (WLI) and water-controlled irrigation (WCI). Phospholipid fatty acid (PLFA) analysis was conducted to track the dynamics of soil microbial communities at tillering, grain-filling, and maturity stages. The results showed that the maximums of grain yield, above-ground biomass, and total N uptake were all obtained in the N2 treatment under WCI. Similar variations in total PLFAs, as well as bacterial and fungal PLFAs, were found, with an increase from the tillering to the grain-filling stage and a decrease at the maturity stage except for actinomycetic PLFAs, which decreased continuously from the tillering to the maturity stage. A shift in composition of the microbial community at different stages of the plant growth was indicated by principal component analysis (PCA), in which the samples at the vegetative stage (tillering stage) were separated from those at the reproductive stage (grain-filling and maturity stages). Soil microbial biomass, measured as total PLFAs, was significantly higher under WCI than that under WLI mainly at the grain-filling stage, whereas the fungal PLFAs detected under WCI were significantly higher than those under WLI at the tillering, grain-filling, and maturity stages. The application of N fertilizer also significantly increased soil microbial biomass and the main microbial groups both under WLI and WCI conditions. The proper combination of irrigation management and N fertilizer level in this study was the N2 (157.5 kg N ha-1) treatment under the water-controlled irrigation pattern. 相似文献
723.
Florent Levavasseur Gwenaelle Lashermes Bruno Mary Thierry Morvan Bernard Nicolardot Virginie Parnaudeau Laurent Thuriès Sabine Houot 《Soil Use and Management》2022,38(1):411-425
The potential contributions of exogenous organic matters (EOMs) to soil organic C and mineral N supply depend on their C and N mineralization, which can be assessed in laboratory incubations. Such incubations are essential to calibrate decomposition models, because not all EOMs can be tested in the field. However, EOM incubations are resource-intensive. Therefore, easily measurable EOM characteristics that can be useful to predict EOM behaviour are needed. We quantified C and N mineralization during the incubation of 663 EOMs from five groups (animal manures, composts, sewage sludges, digestates and others). This represents one of the largest and diversified set of EOM incubations. The C and N mineralization varied widely between and within EOM subgroups. We simulated C and N mineralization with a simple generic decomposition model. Three calibration methods were compared. Individual EOM calibration of the model yielded good model performances, while the use of a unique parameter set per EOM subgroup decreased the model performance, and the use of two EOM characteristics to estimate model parameters gave an intermediate model performance (average RMSE-C values of 32, 99 and 65 mg C g−1 added C and average RMSE-N values of 50, 126 and 110 mg N g−1 added N, respectively). Because of the EOM variability, individual EOM calibration based on incubation remains the recommended method for predicting most accurately the C and N mineralization of EOMs. However, the two alternative calibration methods are sufficient for the simulation of EOMs without incubation data to obtain reasonable model performances. 相似文献
724.
725.
The soil of the long‐term experiment laid out 1949 in Halle has the potential to supply much P. The P taken up by plants where no P (P0) or 15 kg ha−1 yr−1 (P1) was applied was much greater than the P applied as fertilizer (P1). A decrease in yield was measured only after the first 25 years on P0 soils but the P1 treatment has, so far, shown no decrease. Lactate extractions of the soil did not reflect P‐uptake suitably. The release of P from insoluble into water soluble forms was at a minimum after 30 years in P0 soils. P1 soils have now also declined to this minimum value and it remains to be seen whether yields decrease in this treatment in the future. Parallel to this trend, the P sorption increased in P0 soils. The subsoil also seems to be an important source for P supply, possibly influenced by root exudates. Further work is needed to gain a better understanding of soil P dynamics in connection with root exudates and microbes and to identify parameters which will provide more reliable means of calculating fertilizer P requirements. 相似文献
726.
A. K. Lees J. L. Brierley J. A. Stewart A. J. Hilton S. J. Wale P. Gladders N. J. Bradshaw J. C. Peters 《Plant pathology》2010,59(4):693-702
Controlled‐environment and field experiments were done to quantify the individual contribution of seed‐tuber and soilborne inoculum of Colletotrichum coccodes in causing black dot disease of potato tubers. Seed‐tuber and soilborne inocula of C. coccodes were quantified using an existing real‐time PCR assay and related to subsequent incidence and severity of disease. In four field trials, a controlled‐environment experiment and through the monitoring of 122 commercial crops, seed‐tuber inoculum was found to be relatively less important than soilborne inoculum in causing black dot, and the level of seed‐tuber inoculum did not significantly affect either the incidence or severity of disease or the percentage of progeny tubers deemed unmarketable. By contrast, soilborne inoculum had the potential to result in high levels of disease and the level of C. coccodes soil infestation (pg DNA g?1 soil) was found to have a significant effect. At soil infestation levels below 100 pg DNA C. coccodes g?1 soil, 7% of commercial crops had an incidence of black dot greater than 20%, increasing to 40% and 57% of crops at levels of 100–1000 pg g?1 and >1000 pg g?1 soil, respectively. These arbitrary threshold levels for soilborne inoculum related to disease risk are discussed. Interpretation of disease risk based on inoculum levels must, in the future, be informed by agronomic variables and potential control strategies. 相似文献
727.
《Communications in Soil Science and Plant Analysis》2012,43(18):2187-2200
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India. 相似文献
728.
通过对“东北黑土区水土流失综合防治试点工程”中建立的不同措施的径流小区的监测,选择具有典型黑土的黑龙江省宾县三岔河小流域作为研究对象,分别对地埂植物带、荒山灌木埂、横垄、水平坑(坑内植树)、裸地、顺垄6个小区进行了为期2 a的观测。经实测分析计算得出:相对于裸地来说,水平台田、荒山灌木埂、横垄、地埂植物带和顺垄减少侵蚀量分别为99.14%,97.65%,90.66%,87.7%和58.72%,减沙保土效果最好的是水平台田,顺垄保土效果最差。 相似文献
729.
The regeneration of natural vegetation (fallowing) is a traditional practice for restoring fertility of agricultural land in many parts in the tropics. As a result of increasing human population and insufficient fertilizer inputs, the ecosystem fertility functions of traditional fallows must now be improved upon via the use of managed fallows. Interactions between vegetation and soil determine nutrient losses and gains in crop—fallow systems and are influenced by fallow species, patterns and rates of biomass allocation, and crop and fallow management. Nutrient losses occur through offtake in crop harvests during the cropping phase and through leaching, runoff, and erosion in the cropping phase and the initial stage of fallows $#x2014; when nutrient availability exceeds nutrient demand by vegetation. Gains in nutrient stocks in later stages of fallow are generally more rapid on soils with high than low base status due to greater quantities of weatherable minerals and lack of constraints to N2 fixation, deep rooting, and retrieval of subsoil nutrients by fallow vegetation. On low base status soils (exchangeable Ca < 1 cmolc kg–1), N2 fixation and atmospheric inputs are likely to be the main sources of nutrient additions. On high base status soils limited by N, gains in N stocks by inputs from N2 fixation and retrieval of subsoil nitrate can occur relatively rapidly; hence short-term fallows can often improve crop performance. Large losses of Ca associated with soil organic matter (SOM) mineralization and soil acidification during cropping and fallow establishment, combined with chemical barriers to root penetration, suggest that long-duration fallows (> 5 yr) are needed for recovery of cation stocks and crop performance on low base status soils. On both soils, however, residual benefits of fallows on crop yields usually last less than three crops.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献
730.
Gorana Rampazzo Todorovic Michael Stemmer Michael Tatzber Christian Katzlberger Heide Spiegel Franz Zehetner Martin H. Gerzabek 《植物养料与土壤学杂志》2010,173(5):662-670
Despite the importance of soil organic matter (SOM), very few long‐term data concerning soil organic‐C dynamics are available for calibrating and evaluating C models. The long‐term 14C‐turnover field experiment, established in 1967 in Fuchsenbigl, Lower Austria, offers the unique opportunity to follow the fate of labeled C under different crop‐management systems (bare fallow, spring wheat, crop rotation) over a period of more than 35 y. Compared with the crop‐rotation and spring‐wheat treatments, the decline of total organic C was largest in the bare‐fallow treatments, because no significant C input has occurred since 1967. Nonetheless, the decline was not as fast as predicted with the original RothC‐26.3‐model decomposition rate constants. In this work, we therefore calibrated the Roth‐C‐26.3 model for the Pannonian climatic region based on the field‐experiment results. The main adjustment was in the decomposition rate constant for the humified soil C pool (HUM), which was set to 0.009 instead of 0.02 y–1 as determined in the original Rothamsted field trial. This resulted in a higher HUM pool in the calibrated model because of a longer turnover period (111 vs. 50 y). The modeled output based on the calibrated model fitted better to measured values than output obtained with the original Roth‐C‐26.3‐model parameters. Additionally, the original decomposition rate constant for resistant plant material (RPM) was changed from 0.3 to 0.6 y–1 to describe the decomposition of 14C‐labeled straw more accurately. Application of the calibrated model (modified HUM decomposition rate) to simulate removal of crop residues showed that this can entail a long‐term decline of SOM. However, these impacts are strongly dependent on the crop types and on environmental conditions at a given location. 相似文献