全文获取类型
收费全文 | 5781篇 |
免费 | 302篇 |
国内免费 | 925篇 |
专业分类
林业 | 226篇 |
农学 | 486篇 |
基础科学 | 770篇 |
1779篇 | |
综合类 | 2101篇 |
农作物 | 323篇 |
水产渔业 | 68篇 |
畜牧兽医 | 413篇 |
园艺 | 90篇 |
植物保护 | 752篇 |
出版年
2024年 | 45篇 |
2023年 | 168篇 |
2022年 | 247篇 |
2021年 | 261篇 |
2020年 | 283篇 |
2019年 | 313篇 |
2018年 | 241篇 |
2017年 | 290篇 |
2016年 | 328篇 |
2015年 | 263篇 |
2014年 | 303篇 |
2013年 | 452篇 |
2012年 | 406篇 |
2011年 | 379篇 |
2010年 | 356篇 |
2009年 | 349篇 |
2008年 | 261篇 |
2007年 | 288篇 |
2006年 | 245篇 |
2005年 | 275篇 |
2004年 | 175篇 |
2003年 | 137篇 |
2002年 | 111篇 |
2001年 | 99篇 |
2000年 | 98篇 |
1999年 | 78篇 |
1998年 | 74篇 |
1997年 | 73篇 |
1996年 | 67篇 |
1995年 | 51篇 |
1994年 | 39篇 |
1993年 | 62篇 |
1992年 | 39篇 |
1991年 | 37篇 |
1990年 | 34篇 |
1989年 | 14篇 |
1988年 | 14篇 |
1987年 | 23篇 |
1986年 | 11篇 |
1985年 | 3篇 |
1984年 | 5篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1963年 | 1篇 |
1962年 | 1篇 |
1956年 | 2篇 |
1955年 | 2篇 |
排序方式: 共有7008条查询结果,搜索用时 13 毫秒
41.
耕作与轮作方式对黑土有机碳和全氮储量的影响 总被引:9,自引:1,他引:9
土壤有机碳(SOC)及全氮(TN)对土壤肥力、作物产量、农业可持续发展以及全球碳、氮循环等都具有重要影响。为探索不同耕作和轮作方式对耕层黑土SOC和TN储量的影响,本文以吉林省德惠市进行了8 a的田间定位试验中层黑土为研究对象,对免耕、垄作和秋翻三种耕作方式及玉米-大豆轮作和玉米连作两种轮作方式下SOC和TN在各土层的含量变化进行了分析,并采用等质量土壤有机质储量计算方法,对比分析了不同处理对0~30 cm SOC和TN储量的影响。结果表明,与试验开始前相比,玉米-大豆轮作系统中,秋翻下SOC和TN储量均有所降低;免耕显著增加了0~5 cm SOC及TN含量,但SOC在亚表层亏损,导致其储量并未增加;而垄作处理下SOC及TN含量在0~5、5~10 cm的均显著增加,0~30 cm储量亦分别增加了4.9%和10.7%。玉米连作系统的两种耕作处理(免耕和秋翻)下SOC和TN储量均有所增加,且TN储量增幅均高于玉米-大豆轮作系统,其中免耕下TN储量增幅是玉米-大豆轮作的3.2倍。所有处理下C/N均呈降低趋势,其中垄作0~5 cm C/N由12.05降至11.04,降低幅度分别是免耕和秋翻的3.2和2.8倍。综上可知,对质地黏重排水不良的中层黑土,玉米-大豆轮作系统下免耕并不是促进SOC固定的有效形式,而垄作则促进了黑土SOC和TN的积累,这不仅有利于土壤肥力的改善,而且是使农田黑土由CO2"源"变为"汇"的有效形式之一。与玉米-大豆轮作相比,玉米连作下三种耕作方式都有利于SOC和TN积累。 相似文献
42.
43.
本文提出了一种新的多变量有约束非线性函数的寻优方法——单纯形一正反步长法(SSPSS)。文中详细阐述了该方法的搜索策略和具体步骤。同时,通过实例比较了相对步长模拟法的优点。 相似文献
44.
45.
不同作物类型下蒸散发时间尺度扩展方法对比 总被引:1,自引:5,他引:1
该文的目的是评价由瞬时潜热通量经过时间尺度扩展方法计算日蒸散发量的可靠性。为此,采用蒸发比法、改进的蒸发比法、正弦关系法及作物系数法等4种常用的蒸散发时间尺度扩展方法,针对位于华北平原的高营站和位于东北平原的通榆站的5种典型下垫面类型,分别对瞬时潜热通量进行时间尺度扩展,估算日蒸散发量,并与通量站采用涡度相关系统观测的日蒸散发量进行对比。结果表明,尽管4种方法在总体上具有一致性,但改进的蒸发比法的模拟精度最高(相对均方根误差20%左右),更适合于估算中国北方典型农田的日蒸散发量。然而,4种方法均存在系统误差,从而导致采用上午时段瞬时通量估算的日蒸散发量系统偏小,而采用下午时段估算的日蒸散发量系统偏大。 相似文献
46.
选用我国华北地区具有代表性的小麦、玉米、水稻秸秆样品,对比研究了偏最小二乘(PLSR)和高斯核支持向量机(RBF-SVR)分别构建单一和混合种类秸秆全波段定量分析模型的效果,探讨了红外光声光谱耦合化学计量学方法构建我国主要粮食作物秸秆导热系数定量分析模型的可行性。研究发现,小麦秸秆和水稻秸秆导热系数RBF-SVR非线性模型,以及玉米秸秆、混合种类秸秆的PLSR线性模型效果较优。进一步应用蚁群算法与上述最优建模方法相结合,构建了更加优化的小麦秸秆、玉米秸秆、水稻秸秆和混合秸秆导热系数模型,验证决定系数(R_p~2)分别为0.77、0.83、0.96和0.79,验证均方差(RMSEP)分别为0.007 8、0.015、0.005 9、0.014 W/(m·K),验证相对分析误差(RPD)分别为2.81、2.41、7.39和2.15。研究结果表明,红外光声光谱技术结合先进适用的化学计量学方法可实现我国主要粮食作物秸秆导热系数的快速定量分析,但混合秸秆模型预测精度仍需进一步提升。 相似文献
47.
太阳辐射是利用FAO推荐的Penman-Monteith(PM)公式计算参考作物需水量(ET_0)的必要参数。为了探究PM公式在辐射数据缺失的条件下,利用FAO推荐的公式及参数获得太阳辐射值(R_(s_c))替代观测值(R_(s_o))在中国大陆地区的适用性,本研究选用了中国大陆112个站点至少15 a的多年月平均观测数据,通过逐点计算分析了R_(s_c)和R_(s_o)的时空差异及二者分别输入PM公式获得的参考作物需水量ET_(0_c)和ET_(0_o)的时空差异。结果表明,R_(s_c)与R_(s_o)存在显著的时空差异性,二者相对差值范围为-2.86~4.41 MJ·m~(-2)·d~(-1),且在4—8月份差异较大;大致以"胡焕庸线"为界,线西北区域R_(s_c)与R_(s_o)的时空差异相对较小,且稳定,线东南区域的时空差异较大,且不稳定。但是,基于二者计算的ET_(0_c)和ET_(0_o)时空差异却不显著,平均只有0.06~0.26 mm·d~(-1)的误差;"胡焕庸线"西北地区的ET_(0_c)和ET_(0_o)绝对差值常年稳定在0.00~0.25 mm·d~(-1),"胡焕庸线"线东南地区则随季节而变化,夏季差异相对较大。在实际的应用中,西北地区全年和北方地区春、秋、冬三季以及长江、珠江流域所覆盖的南方地区在1、2、10、11、12月使用R_(s_c)替代R_(s_o)获得ET_0具有较好的适用性,北方地区的夏季、南方地区的3—9月份使用R_(s_c)计算ET_0则必须研究相应的方法对结果进行矫正,否则会有误差,且偏大。 相似文献
48.
49.
选用三峡库区33个台站1961-2007年气象资料,利用“作物生长动态统计”模型方法,对三峡库区气候生产潜力的状况和改善气候条件所能获得的增产效益进行了评价。结果表明:三峡库区年平均温度具有西北高、东南低的分布特征,年降水量的分布与温度分布相反;而年日照时数的分布特点是,库区东北部日照时数较多,库区西南部日照时数较少。库区光合生产潜力分布基本与日照时数分布比较一致,都是东北高-西南低;受温度和水分条件的影响,三峡库区光温生产潜力和气候生产潜力都是东北高-东南低的分布型。三峡库区平均的水稻、玉米和冬小麦光合生产潜力分别为23 268、18 447和11 194 kg/hm^2;光温生产潜力分别为19 333、16 689和9 068kg/hm^2,而气候生产潜力分别为12 810、11 548和5 423 kg/hm^2。三峡库区生产潜力的分布空间差异都较大,玉米差异最小在29.7%-52.3%,水稻在23.4%-89.6%,冬小麦最大在49.8%-92.9%。通过改善三峡库区热量条件,水稻可以获得大约20%的增产,玉米大约10%,冬小麦在10%-40%;而改善水分条件所能获得的增产率则是冬小麦最大,水稻次之,玉米最小。 相似文献
50.
土壤有机碳作用及转化机制研究进展 总被引:9,自引:0,他引:9
对土壤有机碳作用的综述研究显示:直至20世纪末,对于土壤有机碳的研究主要集中于阐明具不同化学结构有机物质在土壤中的功能,如胡敏酸、富里酸、黄腐酸的化学结构特征及在土壤肥力中的作用。中欧近年的研究则更关注按照有机碳在土壤中的转化特征进行分组,尝试建立这一分组与土壤有机碳功能的关联。按照转化特征,土壤有机碳可分为稳定性有机碳和营养性有机碳两大类型。前者主要指封存于土壤黏粒中的有机碳,很难被土壤微生物分解和矿化。后者主要指通过作物收获后地表及根系残留物、还田秸秆、有机肥施肥进入土壤的有机碳,是土壤有机碳中易于转化的、活跃的组分,也是形成土壤腐殖质和团聚体的主要前体物质。对土壤肥力具有重要意义。多点长期定位试验研究结果显示:土壤有机碳含量实际上表达了土壤中有机碳输入与分解两个过程的动态平衡。当输入量小于矿化量,将导致土壤有机碳含量和土壤肥力下降。当每年输入的有机碳量大于矿化量,土壤有机碳含量会持续上升;直至每年输入量与矿化量相等,土壤有机碳含量不再增加,此时,土壤有机碳含量达到平衡点。在一般农业生产条件下,达到平衡点的时间周期为20—30年。在营养性有机碳投入量过高情况下,这一动态平衡系统也会... 相似文献