首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6281篇
  免费   2389篇
  国内免费   75篇
林业   865篇
农学   775篇
基础科学   293篇
  1768篇
综合类   2904篇
农作物   530篇
水产渔业   10篇
畜牧兽医   461篇
园艺   332篇
植物保护   807篇
  2025年   137篇
  2024年   240篇
  2023年   256篇
  2022年   324篇
  2021年   288篇
  2020年   317篇
  2019年   349篇
  2018年   275篇
  2017年   403篇
  2016年   411篇
  2015年   346篇
  2014年   374篇
  2013年   571篇
  2012年   571篇
  2011年   435篇
  2010年   391篇
  2009年   375篇
  2008年   323篇
  2007年   338篇
  2006年   276篇
  2005年   240篇
  2004年   158篇
  2003年   143篇
  2002年   142篇
  2001年   137篇
  2000年   147篇
  1999年   99篇
  1998年   102篇
  1997年   79篇
  1996年   44篇
  1995年   63篇
  1994年   71篇
  1993年   51篇
  1992年   42篇
  1991年   45篇
  1990年   39篇
  1989年   32篇
  1988年   33篇
  1987年   34篇
  1986年   12篇
  1985年   8篇
  1984年   1篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1962年   2篇
  1955年   3篇
排序方式: 共有8745条查询结果,搜索用时 15 毫秒
41.
The biomass and the spatial distribution of fine and small roots were studied in two Japanese black pine (Pinus thunbergii Parl.) stands growing on a sandy soil. More biomass of fine and small roots was found in the 17-year-old than in the 40-year-old stand. There were 62 g m−2 of fine roots and 56 g m−2 of small roots in the older stand, which represented mean values of 608 g for fine and 552 g for small roots per tree, respectively. In the younger stand, a total of 85 g m−2 of fine roots and 66 g m−2 of small roots were determined, representing a mean of 238 g for fine and 186 g for small roots per tree, respectively. Fine and small root biomasses decreased linearly with a soil depth of 0–50 cm in the older stand. In the younger stand, the fine and small roots developed only up to a depth of 30 cm. Horizontal distributions (with regard to distance from a tree) of both root groups were homogeneous. A positive correlation in the amount of biomass of fine and small roots per m2 relative to tree size was found. Fine and small root biomasses increased consistently from April to July in both stands. The results also indicated earlier growth activity of the fine roots than small roots at the beginning of the growing season. The seasonal increases in fine and small root biomasses were slightly higher in the younger stand than the older stand.  相似文献   
42.
Seasonal fluxes of CO2 from soil and the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) were estimated for a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) in Central Europe. Mature trees of each species were girdled in August 2002 to eliminate carbohydrate allocation to roots. SR was measured at distances of 0.5, 1.0, and 1.5/2.0 m from the bole of each tree at 1–2 weeks intervals throughout the fall of 2002 and monthly during the spring and summer of 2003. The contribution of roots and mycorrhizae to total SR was estimated by the decrease in SR compared to ungirdled control trees to account for seasonal patterns evident in controls. SR decreased with soil temperature in the fall 2002 and increased again in 2003 as soil warmed. During most of the study period, SR was strongly related to soil temperature. During the dry summer of 2003, however, SR appeared to be uncoupled from temperature and was strongly related to soil water content (SWC). Mean rates of SR in beech and spruce control plots as well as root densities did not show a clear pattern with distance from the bole. SR decreased to levels below controls in beech within a few days after girdling, whereas spruce did not show a significant decrease until October 2002, 6 weeks after girdling. In both beech and spruce, decreased SR in response to girdling was greatest closest to the bole, possibly reflecting increased mycorrhizal activity close to the bole. Autotrophic respiration was estimated in beech to be as much as 50% of the total SR in the stand. The contribution of autotrophic respiration was less certain for spruce, although close to the bole, the autotrophic fraction may contribute to total SR as much as in beech. The large fraction of autotrophic respiration in total SR requires better understanding of tree level stresses that affect carbon allocation below ground.  相似文献   
43.
Bareroot jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) were planted near Elliot Lake, Ontario, on a boreal reforestation site. Site preparation treatments were mixed, mineral and undisturbed (i.e., control) soil. Seedling water relations and growth were examined during the first field season. During the first 28 days after planting, jack pine base (i.e., predawn) and minimum xylem water potential readings were more negative in the control site preparation treatment. White spruce, during the first 10 days, in all site preparation treatments had base and minimum xylem water potential readings more negative than –1.7 MPa. By day 28 base xylem water potentials of white spruce had increased to approximately –1.0 MPa in all site preparation treatments. As the growing season progressed, white spruce minimum xylem water potential readings ceased exceeding the measured turgor loss point first in the mixed followed by the mineral and then control site preparation treatment. Jack pine minimum xylem water potential readings, in all site preparation treatments, almost never exceeded the measured turgor loss point. Water stress and stomatal optimization integrals, day 28 and 125, for both species showed least water stress and greater stomatal optimization in the mixed, mineral and control site preparation treatments, respectively. Both species had less new root growth in the field during the first 28 days after planting compared to seedlings grown for 28 days in a greenhouse for root growth capacity testing. Root growth at 28 days and both shoot and root development at the end of the growing season, were greatest to least in mixed, mineral, and control site preparation treatments, respectively.  相似文献   
44.
    
An empirical model is presented to forecast the incidence of root rot at stand level. In addition, the impact of different thinning programmes on the incidence of root rot is evaluated. The model is based on data from 152 permanent forest research plots of pure Picea abies in southern Sweden, within which the incidence of root rot at stump height in thinned trees has been recorded after each thinning since 1950. In total, about 20 000 stumps have been studied. According to simulations with the model, areas previously used as fields or for grazing are particularly susceptible to root rot, while old hardwood sites are less susceptible. Furthermore, simulations with the model imply that the earlier, the harder or more often a stand is thinned, the faster will be the development of root rot.  相似文献   
45.
Separate assessment of nutrient uptake by individual plants in mixed cropping with trees is impossible without tracer techniques. The different 15N-to-14N isotope ratio of atmospheric and soil N can be used to study the contribution of biologically fixed N to the nutrition of associated trees. In most cases, the assessment of nutrient uptake distribution is an appropriate way of evaluating how to improve the transfer of biologically fixed N. Radioisotopes (e.g., 32P), stable isotopes (e.g., 15N) and rare elements (e.g., Sr) can be used to determine relative root activity distribution by applying the tracer to different soil depths or distances from trees. A broadcast application of the tracer instead of point application makes it possibe to calculate uptake values per unit area. The direct determination of nutrient pathways with such robust experiments offers considerable advantages for improving nutrient use efficiency and complementarity in multistrata agroforestry systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
46.
The effects of j-rooting on water stress and growth of loblolly (Pious taeda L.) and eastern white pine (Pious strobus L.) were examined over three growing seasons in the field. Seedlings were planted in an area with severe herbaceous competition with either their roots planted straight or bent into a j shape. All seedlings were planted with their root collars placed at the soil surface. During the first year j-rooted seedlings consistently had lower water potentials but never statistically significant. Since both treatments were planted with the root collar at the soil surface, this trend was likely due to an initial shallower root system in j-rooted seedlings. In year three no differences in water potential were significant and no trends were evident. Growth did not differ significantly by treatment at any time but, by year three, j-rooted plants were consistently larger for both species.  相似文献   
47.
Ficus species are multipurpose trees well known by rural populations in Sahelian and Sudanian zones of Africa. Their uses are well documented but their amenability for vegetative propagation has not been extensively studied. This paper compares the rooting ability of stem and aerial root cuttings from thirteen Ficus species found in West Africa. It highlights the differences between species belonging to the sub-genera Sycomorus and Urostigma. The former show no capacity to propagate from cuttings whereas the latter, with epiphytic development, can be propagated by cuttings, although this capacity varies among species. Thus, F. thonningii, F. leprieurii and F. ovata are easily propagated, while F. platyphylla and F. elasticoides are propagated with difficulty. The rooting capacity also varies depending on the cutting material used. It decreases in the following order: long leafless hardwood cuttings (pole) > nodal cuttings > apical cuttings. Rooting potential increases when the cuttings are harvested towards the end of the dry season(March to May). Aerial root can be used for cuttings in all species of the sub-genus Urostigma. The capacity of root cuttings to regenerate is greatest when cuttings are collected at the beginning of the dry season (November). In this case, wound-induced adventitious roots arise at the basal end of the cutting while de novo buds are developed from the cambium at the distal end. The subsequent morphological development is identical to that of a stem cutting. These results clarify and allow the optimal use of the knowledge and methods developed by the indigenous people of the Sahel and could assist and promote fig tree (Ficus sp.) domestication in the dry tropics.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
48.
Z. Rengel  V. Jurkic 《Euphytica》1992,62(2):111-117
Summary Aluminium tolerance of 83 genotypes from Croatian and Yugoslav Triticum aestivum germplasm was evaluated in nutrient solutions having Al3+ activities of 0, 12.5 and 25 M. Relative root length (25 M Al3+/0 Al) of various genotypes ranged from 2 to 97% (from very sensitive to tolerant to Al). No genotype with Al tolerance close to that of very tolerant cultivar Atlas-66 was found. Soil, climatic, fertilization, and liming effects that wheat plants giving seeds for the nutrient solution Al-tolerance screening had been subjected to during their growth cycle did not influence the Al-tolerance ranking. Significant correlation was found between screening wheat for Al tolerance in nutrient solutions and in acid Pseudogley soil amended with five rates of limestone in a greenhouse experiment. Seed protein concentration was significantly related to the Al-tolerance ranking (r2 = 0.962). Such a significant correlation was not obtained in a case of rheological and other quality characteristics of seeds. Al-tolerant wheat genotypes identified in this study will be used in breeding for improved Al tolerance.Abbreviations HSD Tukey's Honestly Significant Difference - RRL-2 relative root length, in % (12.5 M Al3+/0 Al) - RRL-4 relative root length, in % (25 M Al3/0 Al)  相似文献   
49.
Summary Investigations on the inheritance of root color in carrot (Daucus carota L.) were carried out by crossing uniformly colored roots to various tinge type roots, i.e. roots of which the xylem differs in color from the phloem.A single major gene (Y) was found to be responsible for the observed differences in progenies of orange x tinge orange-white (orange referring to phloem color, white to xylem color) crosses. Plants carrying the dominant Y-allele had either white or tinge orange-white roots, whereas plants with orange roots were of the genotype yy. Similarly one major gene (Y 2) determined the segregation found in progenies of orange x yellow crosses. In the latter crosses, plants having the dominant Y 2-allele had either yellow or tinge orange-yellow roots while the recessive would be orange. Variation in phloem color, i.e. differences between white and tinge orange-white or between yellow and tinge orange-yellow, was apparently caused by minor genes, modifiers, gene interactions, or by genes that are not involved in carotenogenesis in a direct way.When both the Y- and Y 2-genes were present, the roots were always white. Usually white roots gave a digenic segregation pattern in the F2 when crossed to orange, but there was some evidence that a third gene (Y 1) was segregating in some crosses. Tinge orange-white x yellow crosses gave approximately the same results as orange x white crosses, confirming that the same Y- and Y 2-genes were segregating.In crosses between orange lines and a light yellow line (RY) certain F1 's appeared to have a light orange xylem and a fairly dark orange phloem, which seems to be some evidence for the existence of recessive yellow. Although almost nothing is known yet about the genetics of RY it is assumed that it still carries a dominant inhibitor gene which may be leaky in heterozygous condition. The value of such a line as an aid in the selection of superior orange lines is discussed.Alpha- and beta-carotene were found to be the major pigments in orange carrot tissue; phytofluene, zetacarotene, gamma-carotene and xanthophylls were shown to be present in smaller amounts. Besides xanthophylls and a small amount of beta-carotene dark yellow carrot tissue appeared to contain an appreciable amount of an unidentified pigment (pigment I). Light yellow and white phloem or xylem tissue were low in total carotenoids.Research supported by the College of Agricultural and Life Sciences and by a grant from the Campbell Soup Company, Camden, New Jersey, USA. The investigation is a portion of a thesis submitted in 1978 as partial fulfillment of the requirements of the PhD degree.  相似文献   
50.
Measurements were carried out to survey the quantity of above- and below-ground biomass and its distribution of five Japanese black pines (Pinus thunbergii Parl.) growing on a sandy soil. The roots, divided into diameter groups, were surveyed using two methods—soil coring and excavation. Average dry weight of total biomass of the trees was 176,185 g. Roots represented 13.2%, below-ground stump 6.5%, stem 70.4% and branches with needles 9.9% of total biomass. Roots made up about two thirds and stump one third of below-ground biomass. Total length of below-ground biomass (except roots with diameter < 0.1 cm) was 479.1 m/tree. Roots with diameter of 0.1–0.2 cm represented only 0.7% of below-ground biomass, however as much as 49.9% of their total length. Roots with diameter over 10.0 cm constituted as much as 21.6% of below-ground biomass, however were only 0.3% of its total length. Root systems had well developed tap roots to maximal depth of 231 cm. The results indicated that mass and length of roots with diameter 0.5–2.0 cm had a close correlation with branch mass. Mass and length of roots with diameter 2.0–10.0 cm closely correlated to stem mass. Stem mass, root mass and root length closely correlated to DBH. A rather low correlation was found between DBH and mass of branches and below-ground stump. DBH was a suitable variable for predicting total biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号