首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7825篇
  免费   2909篇
  国内免费   71篇
林业   404篇
农学   617篇
基础科学   95篇
  1630篇
综合类   744篇
农作物   218篇
水产渔业   2111篇
畜牧兽医   3063篇
园艺   32篇
植物保护   1891篇
  2024年   11篇
  2023年   25篇
  2022年   35篇
  2021年   150篇
  2020年   529篇
  2019年   958篇
  2018年   823篇
  2017年   902篇
  2016年   704篇
  2015年   675篇
  2014年   657篇
  2013年   937篇
  2012年   1083篇
  2011年   713篇
  2010年   613篇
  2009年   324篇
  2008年   343篇
  2007年   195篇
  2006年   191篇
  2005年   181篇
  2004年   143篇
  2003年   135篇
  2002年   128篇
  2001年   113篇
  2000年   131篇
  1999年   21篇
  1998年   25篇
  1997年   16篇
  1996年   9篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Leaching losses of N are a major limitation of crop production on permeable soils and under heavy rainfalls as in the humid tropics. We established a field trial in the central Amazon (near Manaus, Brazil) in order to study the influence of charcoal and compost on the retention of N. Fifteen months after organic‐matter admixing (0–0.1 m soil depth), we added 15N‐labeled (NH4)2SO4 (27.5 kg N ha–1 at 10 atom% excess). The tracer was measured in top soil (0–0.1 m) and plant samples taken at two successive sorghum (Sorghum bicolor L. Moench) harvests. The N recovery in biomass was significantly higher when the soil contained compost (14.7% of applied N) in comparison to only mineral‐fertilized plots (5.7%) due to significantly higher crop production during the first growth period. After the second harvest, the retention in soil was significantly higher in the charcoal‐amended plots (15.6%) in comparison to only mineral‐fertilized plots (9.7%) due to higher retention in soil. The total N recovery in soil, crop residues, and grains was significantly (p < 0.05) higher on compost (16.5%), charcoal (18.1%), and charcoal‐plus‐compost treatments (17.4%) in comparison to only mineral‐fertilized plots (10.9%). Organic amendments increased the retention of applied fertilizer N. One process in this retention was found to be the recycling of N taken up by the crop. The relevance of immobilization, reduced N leaching, and gaseous losses as well as other potential processes for increasing N retention should be unraveled in future studies.  相似文献   
982.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.  相似文献   
983.
The worldwide increase of food demand and reduced sweet‐water availability in some important food‐producing regions raised interest in more efficient water use, which has become one of the central research topics in agriculture. Improved irrigation management and reduced bare‐soil evaporation have highest priority to increase agronomic water‐use efficiency (WUE). Compared to these technical (irrigation) and basic (crop production) management options, effects of nutrient management on WUE were less frequently considered. Twenty‐nine publications on nitrogen (N) effects on biomass WUE of container‐grown plants are considered in this review. Most of them indicate positive N effects on WUE, and relevance of N effects on intrinsic WUE and unproductive water and carbon loss is discussed. A plot of 90 published data of percent decreases of WUE and dry mass under variable N supply is presented. Extrapolation of biomass WUE from leaf measurements of intrinsic WUE is critically reviewed. The positive correlation between WUE and dry‐mass formation suggests that physiological rather than stomatal effects are more important in order to explain positive N effects on WUE.  相似文献   
984.
The protective impact of aggregation on microbial degradation through separation has been described frequently, especially for biotically formed aggregates. However, to date little information exists on the effects of organic‐matter (OM) quantity and OM quality on physical protection, i.e., reduced degradability by microorganisms caused by physical factors. In the present paper, we hypothesize that soil wettability, which is significantly influenced by OM, may act as a key factor for OM stabilization as it controls the microbial accessibility for water, nutrients, and oxygen in three‐phase systems like soil. Based on this hypothesis, the first objective is to evaluate new findings on the organization of organo‐mineral complexes at the nanoscale as one of the processes creating water‐repellent coatings on mineral surfaces. The second objective is to quantify the degree of alteration of coated surfaces with regard to water repellence. We introduce a recently developed trial that combines FTIR spectra with contact‐angle data as the link between chemical composition of OM and the physical wetting behavior of soil particles. In addition to characterizing the wetting properties of OM coatings, we discuss the implications of water‐repellent surfaces for different physical protection mechanisms of OM. For typical minerals, the OM loading on mineral surfaces is patchy, whereas OM forms nanoscaled micro‐aggregates together with metal oxides and hydroxides and with layered clay minerals. Such small aggregates may efficiently stabilize OM against microbial decomposition. However, despite the patchy structure of OM coating, we observed a relation between the chemical composition of OM and wettability. A higher hydrophobicity of the OM appears to stabilize the organic C in soil, either caused by a specific reduced biodegradability of OM or indirectly caused by increased aggregate stability. In partly saturated nonaggregated soil, the specific distribution of the pore water appears to further affect the mineralization of OM as a function of wettability. We conclude that the wettability of OM, quantified by the contact angle, links the chemical structure of OM with a bundle of physical soil properties and that reduced wettability results in the stabilization of OM in soils.  相似文献   
985.
Long‐term soil acidification leads to lower pH values and to a concomitant decrease in base saturation (BS). The relationship between pH and base saturation (BS) in acidified forest soils can be disturbed by processes such as nutrient cycling by vegetation, temporary saturation by ground water that comes into contact with calcareous material, or by upward diffusion of base cations from deeper horizons. This paper examines the relationship between pH and BS in Swiss forest soils developed from calcareous and noncalcareous parent material and identifies some of the factors that can affect the BS in the decalcified parts of soils derived from calcareous parent material. The decalcified zone in the latter soils has a higher BS on average compared to soils from noncalcareous parent material, but their pH values are identical. In the pH range 4.0–4.5, the difference in BS may vary by a factor of three. The mean BS in the decalcified zone tends to decrease with increasing depth of the calcareous layer. The water regime also affects the BS in soils on calcareous parent material. In soils temporarily saturated by groundwater (gleysols), the BS in the decalcified zone is always high (85%–100%) because of the continuous contact between the soil water and the calcareous parent material. In addition, the inhibited drainage impedes the depletion of base cations in these soils. In contrast, soils that are temporarily saturated by rainwater are depleted in base cations due to the alternating wetting‐and‐drying regime and the associated leaching of dissolved ions. In such soils, the depletion of base cations is strongly related to the extent of hydromorphy. Stagnogleyic soils, with the longest period of water saturation, have the highest depletion levels. We conclude that in such soils, the diffusion of base cations from deeper zones is strongly compensated by leaching from the very acidic soil horizons. The pH–base saturation anomaly has consequences for some of the methods used to calculate the critical loads of acidity for forest soils in Switzerland, with many soils being less sensitive than previously reported.  相似文献   
986.
In spite of their low concentrations in soil solutions, low–molecular weight organic substances (LMWOS) such as amino acids, sugars, and uronic acids play a major role in the cycles of C and N in soil. With respect to their low concentrations and to possible matrix interferences, their analysis in soil leachates is a challenging task. We established two HPLC (high‐performance liquid chromatography) methods for the parallel determination of amino acids and carbohydrates in soil leachates. The pre‐column derivatization of amino acids with an o‐phthaldialdehyde (OPA) mercaptoethanol solution yields quantitation limits between 0.03 and 0.44 µmol L–1 and SD values of <8.3% (n = 9). High‐performance anion‐exchange chromatography (HPAEC) on a Dionex CarboPac PA 20 column with a NaOH acetate gradient combined with pulsed amperometric detection (PAD) was used for the determination of carbohydrates. The calibration curves obtained for 11 carbohydrates showed excellent linearity over the concentration range from 0.02 to 50.0 mg L–1. Recovery studies revealed good results for all analytes (89%–108%). Interferences from Hg(II) salts and chloroform used for stabilization of the leachates did not occur with both chromatographic methods. The optimized method was successfully used for quantitative determinations of amino acids and carbohydrates in soil leachates.  相似文献   
987.
The study on energy-use efficiency and economics of soybean based cropping system, viz., soybean–wheat (Glycine max 9 L., Triticum aestivum L. emend. Fiori & Paol.), soybean–lentil (Lens culinaris Medicus) and soybean–field pea (Pisum sativum L., sensu lato), was carried out at the Hawalbagh experimental farm of Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India during 2001–2003 (29°36′ N, 79°40′ E). These cropping systems, under rainfed conditions, were evaluated with different tillage management practices, viz., zero tillage (ZT), minimum tillage (MT) and conventional tillage (CT). Each tillage management practice, under each cropping system was evaluated for total energy output, energy input–output ratio, gross income, net income and marginal income, to variable cost of cultivation. Results revealed that the maximum energy was consumed in terms of chemical fertilizers, followed by seed and plant protection chemicals, in all cropping systems. Equivalent energy was used from literature for conversion purpose. The maximum output energy was observed in CT (44,253 MJ/ha), followed by MT for soybean–lentil cropping system (43,450 MJ/ha). The output–input energy ratio was maximum in ZT for soybean–lentil (4.9) followed by MT for soybean–pea cropping system (4.6). The economic analysis also revealed that the maximum benefits could be obtained from these sequences. Conventional tillage for all cropping sequences was found to be a better option as compared to minimum tillage and zero tillage. Benefit–cost ratios were higher in conventional tillage in all the three cropping systems. However, from the point of energy saving or cost reduction, zero tillage and minimum tillage may be considered depending on resources.  相似文献   
988.
为在耕地休养生息背景下开展地下水休耕政策过程绩效评价,以黄淮海平原为研究对象,通过对黄淮海平原的2 个市、5 个县政府相关部门和农户实地调查,以公共价值理论为基础,构建地下水超采区休耕政策过程绩效评价指标体系,并辅以层次分析法、专家打分法等方法对地下水严重超采区休耕政策过程绩效进行评估。结果表明:1)明晰了黄淮海平原地下水超采区休耕政策公共价值体现并从公平性、参与性、效率性、可持续性等4 个维度构建休耕政策过程绩效评价指标体系;2)黄淮海平原地下水超采区休耕政策过程绩效评估总得分为74.38分,绩效等级处在“较好”的水平;3)休耕政策实施过程的关键环节包括休耕政策面积落实环节、资金管理和使用环节、政府组织环节、政策生态目标认识环节;休耕政策实施过程的薄弱环节,包括休耕政策面积落实环节、资金管理和使用环节、政府组织和论证环节。综上,本研究构建的地下水超采区休耕政策过程绩效评价体系具有系统性、科学性和可操作性,可为休耕政策实施过程定量评价提供了研究思路和支撑。  相似文献   
989.
Methodology of Programmable Process Structures has been implemented and applied for the flexible automatic generation and simulation of Recirculating Aquaculture Systems. First, we implemented and validated the model for a pilot unit, based on short time experiments with Common carp (Cyprinus carpio), utilizing data and functionalities from the literature. Afterwards, starting from this model we generated a hypothetical single tank model of simulated increasing volume, to demonstrate how it supports the simplified, preliminary analysis, design and control of the possible multi-stage systems. We showed that the simulation of a single tank with an appropriately increasing volume makes possible to study the various control strategies, as well as to design the structure and the grading strategy of the multi-stage systems, without an increased combinatorial complexity. In the knowledge of the simulated increasing volume, we determined the volumes of subsequent stages by equidistant partitioning of the rearing time, algorithmically. Considering the available (or planned) tank volumes, this method makes possible to design a multi-stage system that approximately corresponds to the previously optimized single tank model. This conclusion was illustrated by the generation and simulation of the model for the respective multi-stage system.  相似文献   
990.
《Soil Use and Management》2018,34(2):249-257
Shifting cultivation involves a cycle of forest clearing, cultivation and a fallow phase. As the practice involves clearing forest, it is considered unsustainable and leads to soil fertility loss and erosion. While several variations of the practice exist, traditional communities undertake the practice systematically with relatively long fallow periods and are often knowledgeable about their landscape in terms of soil and its management. To better understand one such system, we quantified soil recovery following cultivation in terms of macronutrients and documented the traditional knowledge of the Adi community in a remote site in the Eastern Himalaya. We collected soil samples from three replicates, each from currently cultivated sites, uncut forest sites and successional sites 3, 12 and 25 yr following cultivation. Available nitrogen and phosphorus significantly increased, and there was an increasing trend in soil organic matter following cultivation. The Adi differentiated nine types of soil and preferred specific soil types for shifting and settled cultivation. We documented soil management and methods of soil fertility retention practised by the Adi. Their location of different crops in the field was based on the effect of the crop on soil fertility. Our research indicated that soil nutrient recovery was considerable following cultivation and that traditional shifting cultivators in the landscape were knowledgeable about their landscape in terms of soil diversity, undertaking practices to manage soil erosion and fertility. Future policies that will affect shifting cultivation in the region should acknowledge such systematic use of a landscape by traditional farming communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号