首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   15篇
  国内免费   39篇
林业   1篇
农学   21篇
基础科学   5篇
  134篇
综合类   52篇
农作物   11篇
水产渔业   10篇
畜牧兽医   8篇
植物保护   16篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   13篇
  2020年   16篇
  2019年   13篇
  2018年   13篇
  2017年   15篇
  2016年   11篇
  2015年   12篇
  2014年   16篇
  2013年   25篇
  2012年   11篇
  2011年   12篇
  2010年   13篇
  2009年   12篇
  2008年   3篇
  2007年   10篇
  2006年   8篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有258条查询结果,搜索用时 0 毫秒
71.
秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响   总被引:29,自引:0,他引:29  
中国南方双季稻区秸秆资源丰富,但秸秆还田与耕作制度的最佳组合方式目前尚不明确。通过连续3年的田间定位试验(2013—2015年),研究秸秆还田条件下不同耕作方式对双季稻产量及土壤肥力质量的影响。试验处理包括翻耕与秸秆不还田(CT)、翻耕与秸秆还田(CTS)、旋耕与秸秆还田(RTS)和免耕与秸秆还田(NTS)。结果表明:与CTS处理相比,CT和NTS处理早稻平均产量分别降低3.5%和5.2%,晚稻平均产量分别降低3.6%和6.4%,其中,NTS处理晚稻产量显著低于CTS处理(p0.05);与CTS处理相比,RTS处理早稻和晚稻平均产量分别增加6.1%和3.1%。秸秆还田条件下土壤有机碳(SOC)、全氮(TN)、有效磷(AP)和速效钾(AK)均呈增加的趋势,其中,2015年CTS、RTS和NTS处理SOC、TN、AP和AK显著高于CT处理。与CT处理相比,NTS处理土壤容重(BD)增加4.9%(p0.05),CTS和RTS处理BD分别降低4.1%和5.2%,其中RTS处理显著低于CT处理。与CT处理相比,秸秆还田下CTS、RTS和NTS处理土壤p H分别降低1.9%、1.5%和2.5%,其中,CTS和NTS处理显著降低。CT处理土壤肥力质量呈下降的趋势,秸秆还田条件下各处理土壤肥力质量均呈提高的趋势,其中,2015年RTS处理分别高于CTS、NTS处理16.4%和80.4%。由此可见,在南方双季稻区,与常规翻耕和免耕相比,秸秆还田条件下,采用长期旋耕的方式能够进一步提高土壤肥力质量和水稻产量。  相似文献   
72.
等养分条件下稻草还田替代双季早稻氮钾肥比例的研究   总被引:7,自引:4,他引:7  
【目的】研究等量氮磷钾养分投入条件下,长期稻草原位全量还田配施化肥对双季早稻氮 (N)、磷 (P)、钾 (K) 养分吸收累积、转运及养分利用的影响,为南方稻区稻草资源有效利用,维持并提高土壤肥力及水稻合理施肥提供理论依据。【方法】以江西温圳国家级耕地质量监测点长期定位试验为研究对象,陆两优 996 为供试材料,在不施化肥和施用化肥基础上设稻草还田、稻草烧灰还田和稻草不还田共 6 个处理,除空白对照外,所有处理养分投入量相等。于 2015 年在早稻移栽期、分蘖期、幼穗分化期、抽穗期和成熟期取地上部植株样,分析水稻植株不同部位的 N、P、K 含量和累积量以及转运比例,并计算 N、P、K 养分利用效率。【结果】稻草还田提高了水稻产量,施肥条件下稻草还田处理比稻草烧灰还田和稻草不还田处理平均增产 2.9%~ 6.4%,比不施肥区产量增幅高达 23.8%~ 26.0%,且差异达显著水平。无论是施肥区处理,还是无肥区处理,与稻草烧灰还田和稻草不还田处理相比,稻草还田植株中 K 含量及 N、P、K 积累量在整个生育期均较高,而 N、P 含量在生育后期较高,N、P、K 积累量以施肥区处理大于相应的无肥区处理;稻草还田提高水稻 N、P、K 养分农学效率、回收率和养分偏生产力,且 N、K 差异达显著水平,同时显著增加 K 的收获指数;稻草还田还提高了抽穗至成熟期茎鞘中 N、P、K 的转运量、转运率及转移养分对籽粒的贡献率,而叶片各处理间差异不显著。【结论】稻草还田配施化肥能提高水稻产量,同时还可以调节 N、P、K 养分的积累和转运,提高养分的吸收利用效率。本试验条件下,稻草还田可替代化肥氮肥 (N) 29.5%、磷肥 (P2O5) 4.0% 和钾肥 (K2O) 50.0%。综合考虑,稻草还田相比稻草烧灰还田而言是南方稻区土壤养分管理实现高效利用的有效途径之一。  相似文献   
73.
We investigated the role of earthworms in the N cycle in a shifting agriculture system under a 5- and a 15-year Jhum system fallow period intervening between two croppings on the same site. Earthworms participated in the N cycle through worm cast egestion, mucus production, and dead tissue decomposition. Soil N was initially depleted by volatilization during slash and burn operations, and subsequently during cultivation processes. These losses were more pronounced under the 15-year Jhum system. We also studied the addition of N to the system in crop residues, through weed recycling, or in compost applied as organic manure under both the 5- and the 15-year Jhum systems. The total soil N made available for uptake by the plant through the activity of earthworms in this agro-ecosystem was higher than the total input of N to the soil through the addition of slashed vegetation, inorganic and organic manure, and recycled crop residue and weeds. Therefore, in highly leached soils of the humid tropics, worm activity is particularly, important because of rapid incorporation of litter into the mineral soils and because of local concentrations of nutrients in the surface soil layers.  相似文献   
74.
秸秆配施氮肥还田对水稻土酶活性的影响   总被引:3,自引:0,他引:3  
通过田间试验研究秸秆还田时间及配施氮肥比例对水稻土酶活性的影响,以期为培育水稻土肥力和稳定稻田生态系统功能提供理论依据。试验设置2个秸秆还田时间(WS,冬季还田;SS,春季还田)和4个氮肥配施量(N0,秸秆还田,试验期内全程不添加矿质氮;NB,常规施肥,还田时不添加矿质氮;N30B,秸秆还田时添加早稻基肥用量的30%矿质氮;N60B,秸秆还田时添加早稻基肥用量的60%矿质氮)。研究结果表明:1冬季秸秆翻耕还田能增加冬闲期6种与土壤碳周转相关酶(β-葡萄糖苷酶、β-纤维二糖苷酶、β-木糖苷酶、多酚氧化酶、过氧化物酶和蔗糖酶)的活性,冬闲期冬季秸秆还田条件下土壤酶活性均高于春季还田,生育期内冬季秸秆翻耕还田措施对土壤β-葡糖苷酶和过氧化物酶有增加作用;2秸秆还田并配施氮肥措施显著地增加冬闲期和生育期β-纤维二糖苷酶的活性,但配施氮肥的3个比例间土壤酶活性并无显著差异;3除多酚氧化酶外,其他5种酶均与其有机碳投入量呈显著正相关。因此,冬季秸秆还田及配施氮肥能在一定程度上调控与碳周转相关的土壤酶活性,对推广冬闲期秸秆翻耕还田及保障作物的产量具有重要的生态学意义。  相似文献   
75.
Microbial growth in soil is mostly limited by lack of carbon (C). However, adding fresh, C-rich litter can induce nitrogen (N) limitation. We studied the effect of alleviating C and N limitation in high-pH (> 8) soils, soils expected to favor bacterial over fungal growth. Nitrogen limitation was induced by incubating soils amended with C-rich substrate (starch or straw) for 4 weeks. Limiting nutrients and the effects of alleviating limitation were then studied by adding C (as glucose) or N (as NH4NO3) and measuring microbial growth and respiration after 4 d. In non-amended, C-limited soils, adding C but not N increased both microbial respiration and bacterial growth. In N-limited, substrate-amended soils, adding C increased respiration, whereas adding N increased both microbial respiration and growth. Inducing N limitation by amending with straw was most easily detected in increased fungal growth after the addition of N, whereas with starch, only bacterial growth responded to alleviating N limitation. Compared to earlier results using a low-pH soil, the effect of substrate used to induce N limitation was more important than pH for inducing bacterial or fungal growth after alleviating N limitation. Furthermore, we found no evidence that alleviating N limitation resulted in decreased respiration concomitant with increased microbial growth in soil, suggesting no drastic changes in C use efficiency.  相似文献   
76.
Resource availability and limiting factors for bacterial growth during early stages of soil development (8-138 years) were studied along a chronosequence from the glacial forefield of the Damma glacier in the Swiss Alps. We determined bacterial growth (leucine incorporation) and we investigated which resource (C, N or P) limited bacterial growth in soils formed by the retreating glacier. The latter was determined by adding labile sources of C (glucose), N and P to soil samples and then measuring the bacterial growth response after a 40 h incubation period. Bacterial growth increased with increasing soil age in parallel with the build up of organic matter. However, lower bacterial growth, when standardized to the amount of organic C, was found with time since the glacier retreat, indicating decreasing availability of soil organic matter with soil age. Bacterial growth in older soils was limited by the lack of C. The bacteria were never found to be limited by only N, only P, or N + P. In the youngest soils, however, neither the addition of C, N nor P singly increased bacterial growth, while a combination of C and N did. Bacterial growth was relatively more limited by lack of N than P when the C limitation was alleviated, suggesting that N was the secondary limiting resource. The availability of N for bacterial growth increased with time, as seen by an increased bacterial growth response after adding only C in older soils. This study demonstrated that bacterial growth measurements can be used not only to indicate direct growth effects, but also as a rapid method to indicate changes in bacterial availability of nutrients during soil development.  相似文献   
77.
Application of C-rich plant residues can change the soil system from C-limitation for microbial growth to limitation by other nutrients. However, the initial nutrient status of the soil may interact with the added amount of residues in determining limitation. We studied this interactive effect in soils from the Harvard Forest LTER, where annual addition of N since 1988 has resulted in soils with different N-status: No N (Unfertilized), 50 (Low N) and 150 (High N) kg N ha−1. We hypothesized that adding C-rich substrate would change the soil from being C- to being N-limited for bacterial growth and that the extent of N-limitation would be higher with increasing substrate additions, while becoming less evident in soil with increasing N-status. We compared the effect of adding two C-rich substrates, starch (0, 10, 20, 40 mg g−1 soil) and straw (0, 20, 40, 80 mg g−1), incubating the soils for up to 3 and 4 weeks for starch and straw, respectively. Nutrient limitations were studied by measuring bacterial growth 3 days after adding C as glucose and N as NH4NO3 in a full factorial design. Initially bacterial growth in all soils was C-limited. As hypothesized, adding C-rich substrates removed the C-limitation, with lower amounts of starch and straw needed in the unfertilized and Low N soils than in the High N soil. Combinations of different N-status of the soil and amendment levels of starch and straw could be found, where bacterial growth appeared close to co-limited both by available C and N. However, at even higher amendment levels, presumable resulting in N-limitation, bacterial growth still responded less by adding N then C-limited soils by adding C. Thus, in a C-limited soil there appeared to be N available immediate for growth, while in an N-limited soil, easily available C was not immediately available.  相似文献   
78.
稻草还田对烟田土壤性状和烟草产量及品质的影响   总被引:21,自引:0,他引:21  
在永州和浏阳进行的稻草还田田间试验结果表明,稻草还田无论是以覆盖还是翻埋方式还田,对烟田土壤性状和烟草产量、品质均有明显的影响。稻草覆盖能在烟草生长后期高温季节对土壤有一定的保湿作用,同时还能增加0~5cm土层土壤的微生物数量,提高烤烟的产量、产值、纯收入和内、外品质;稻草翻埋能增加15~20cm土层土壤的微生物数量,同样能提高烤烟的产量、产值、纯收入和内、外品质。为了避免稻草在腐解过程中产生不利影响,建议稻草还田时应定量(4500kg/hm^2),稻草翻埋还田的应尽量早翻埋,在晚稻收割以后就可以将稻草翻埋下去。  相似文献   
79.
秸秆还田是水稻生产中普遍采用的一项措施,具有固碳和促进养分元素循环、减少生产中的化肥施用等生态环境功能,但亦存在温室气体排放问题。鉴于秸秆还田对稻田产生固碳和温室气体增排的双重效果,本文综述了稻田生态系统秸秆资源利用现状,探讨了秸秆还田的土壤增碳效应,总结了秸秆还田下的温室气体(CO2、N2O和CH4)排放过程及其微生物过程机理。提出了应加强秸秆还田增碳过程中的物理–化学过程与微生物过程的耦合机理及其对固碳功能的作用机理、稻田温室气体产生机制与控制途径的研究,以实现稻田土壤固碳减排增汇和增产的共轭双赢作用。  相似文献   
80.
Abstract

Barley (Hordeum vulgare L.) is an important crop for cereal research. In this study, two barley genotypes the wild-type (Steptoe) and the mutant (Az12) were used. An experiment was conducted using 15N-tracing method to NADH-specific nitrate reductase (NR)-deficient mutant seedling of barley. The N-depleted seedlings were exposed to a nutrient solution containing nitrate and nitrite, and were labeled with 15N for 38?h under (14?L/10D) cycles. The two genotypes utilized 15NO3? and accumulated it as reduced 15N, predominately in the shoots. However, nitrate reduction in the Az12 shoots was 9% lower than that in the Steptoe shoots at 38?h. As a result, in the Az12, nitrate accumulation in shoots was 78% higher than that in the Steptoe. Accumulation of reduced 15N in the Az12 roots was nearly similar to that of the Steptoe roots, but 8% lower in the Az12 shoots than in the Steptoe shoots at the end of the experiment. Also for both genotypes, root contribution increased during L/D cycles and decreased during the subsequent light cycle. Upward transport of reduced 15N via the xylem in the Az12 was nearly two times higher than that in Steptoe during the second light period (24–38?h). In both genotypes, xylem transport of reduced 15N was far exceeded the downward phloem transport. Abbreviations Anl accumulation of reduced 15N from 15NO3? in non-labeled roots of split roots

Ar accumulation in roots of reduced 15N from 15NO3?

As accumulation in shoots of reduced 15N from 15NO3?

Rr 15NO3? reduction in roots

Rs 15NO3? reduction in shoots

Tp translocation to root of shoot reduced 15N from 15NO3? in phloem

Tx translocation to shoot of root-reduced 15N from 15NO3? in xylem

FW fresh weight

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号