首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7032篇
  免费   278篇
  国内免费   792篇
林业   488篇
农学   609篇
基础科学   715篇
  1224篇
综合类   3227篇
农作物   677篇
水产渔业   376篇
畜牧兽医   311篇
园艺   365篇
植物保护   110篇
  2024年   29篇
  2023年   58篇
  2022年   97篇
  2021年   118篇
  2020年   129篇
  2019年   135篇
  2018年   96篇
  2017年   220篇
  2016年   277篇
  2015年   344篇
  2014年   343篇
  2013年   403篇
  2012年   480篇
  2011年   731篇
  2010年   655篇
  2009年   653篇
  2008年   529篇
  2007年   555篇
  2006年   396篇
  2005年   297篇
  2004年   202篇
  2003年   223篇
  2002年   128篇
  2001年   114篇
  2000年   115篇
  1999年   115篇
  1998年   91篇
  1997年   96篇
  1996年   83篇
  1995年   78篇
  1994年   69篇
  1993年   62篇
  1992年   59篇
  1991年   50篇
  1990年   29篇
  1989年   11篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
排序方式: 共有8102条查询结果,搜索用时 225 毫秒
991.
Soil water is an important factor affecting photosynthesis, transpiration, growth, and yield of crops. Accurate information on soil water content (SWC) is crucial for practical agricultural water management at various scales. In this study, remotely sensed parameters (leaf area index, land cover type, and albedo) and spatial data manipulated using the geographic information system (GIS) technique were assimilated into the boreal ecosystem productivity simulator (BEPS) model to monitor SWC dynamics of croplands in Jiangsu Province, China. The monsoon climate here is characterized by large interannual and seasonal variability of rainfall causing periods of high and low SWC. Model validation was conducted by comparing simulated SWC with measurements by a gravimetric method in the years 2005 and 2006 at nine agro-meteorological stations. The model-to-measurement R2 values ranged from 0.40 to 0.82. Nash-Sutcliffe efficiency values were in the range from 0.10 to 0.80. Root mean square error (RMSE) values ranged from 0.028 to 0.056 m3 m−3. Simulated evapotranspiration (ET) was consistent with ET estimated from pan evaporation measurements. The BEPS model successfully tracked the dynamics and extent of the serious soil water deficit that occurred during September-November 2006. These results demonstrate the applicability of combining process-based models with remote sensing and GIS techniques in monitoring SWC of croplands and improving agricultural water management at regional scales in a monsoon climate.  相似文献   
992.
The objectives of this study were to investigate the effects of full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD) on plant biomass, irrigation water productivity (IWP), nitrogen use efficiency (NUE) of tomato, and soil microbial C/N ratio. The plants were grown in pots with roots split equally between two soil compartments in a climate-controlled glasshouse. During early fruiting stage, plants were exposed to FI, DI, and PRD treatments. In FI, both soil compartments were irrigated daily to a volumetric soil water content of 18%; in PRD, only one soil compartment was irrigated to 18% while the other was allowed to dry to ca. 7-8%, then the irrigation was shifted; in DI, the same amount of water used for the PRD plants was equally split to the two soil compartments. The results showed that, the FI treatment produced significantly higher dry biomasses of leaves, stems, and fresh weight of fruit and water productivity of aboveground dry biomass production than either DI or PRD, however, fruit IWP in DI was 25% higher than that of FI, and harvest index in DI and PRD were 50% and 22% higher than FI, respectively, for the 26% and 23% less water used in the DI and PRD, respectively, than the FI treatment. The DI treatment caused the smallest losses of N and highest N use efficiency by fruit. Both DI and PRD caused a significant increase in the soil microbial C/N ratio, meaning ratio of fungal biomass was high at low soil water contents. The result indicates that more work is needed to link the aboveground N uptake and the underground microbially mediated N transformation under different water-saving irrigation regimes.  相似文献   
993.
The island of Crete (Greece) suffers from an increasingly severe water shortages, coupled with declining groundwater supplies. We compared the costs and benefits of alternative strategies for treating wastewater for use in irrigating vegetables: (1) using a membrane bioreactor (MBR), (2) connecting new residences to centralized wastewater-treatment plants, (3) building new wastewater-treatment plants, and (4) using natural wastewater-treatment systems in rural areas. We also examined the impact of increasing water scarcity on the net benefits of treating wastewater with an MBR. As expected, the value of treated wastewater increases with increasing water scarcity. The net benefit of treating wastewater with an MBR and using the reclaimed water to irrigate vegetables ranges from about 0.02 €/m3 to 2 €/m3 as water scarcity increases. Our results should be helpful in guiding analysts in Greece and other arid countries wishing to evaluate the financial viability of alternative methods of treating wastewater for use in agriculture.  相似文献   
994.
隔坡水平沟土壤水分变化规律及利用效果   总被引:2,自引:1,他引:1  
2001~2003年对隔坡水平沟土壤水分变化规律及利用效果进行了研究。结果表明:年际间,不论雨水丰欠,隔坡水平沟0~200cm土层储水量均有所增加,3年平均,水平沟玉米田增加92.0mm,马铃薯田增加132.1mm;雨季降雨量多的年份,水平沟土壤储水量增加幅度相对较大,丰水年比平水年和欠水年平均值多增加50.1mm;与坡耕地相比,水平沟玉米田比坡耕地玉米田0~200cm土层土壤含水量提高1.53%,土壤储水量增加50.4mm。年份内,全年降雨分布的不均匀,引起隔坡水平沟作物土壤水分反常变化,欠水年的严重春旱,使水平沟0~200cm土层储水量到播种时比坡耕地还少18.6mm;平水年和丰水年的严重伏旱,使雨季隔坡水平沟0~200cm土层土壤含水量低于欠水年,水平沟玉米田低3.42%~4.50%,马铃薯田低2.99%~3.25%。作物收获后,进行隔坡水平沟玉米整桔秆覆盖,既能减轻冬前土壤水分散失,又能缓解春旱,土壤冻结和播种时测定,水平沟覆盖田比不覆盖田0~100cm土层土壤含水量提高2.11%和1.19%。3年试验,与坡耕地相比,隔坡水平沟玉米比坡耕地玉米增产100.2%,降水利用提高9.3kg/mm·hm2。  相似文献   
995.
Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after tuber bulking and lasted for 6 weeks until final harvest. Analysis across the soil textures showed that fresh yields were not significant between the irrigation treatments. However, the same analysis across the irrigation treatments revealed that the effect of soil texture was significant on the fresh yield and loamy sand produced significantly higher fresh yield than the other two soils, probably because of higher leaf area index, higher photosynthesis rates, and “stay-green” effect late in the growing season. More analysis showed that there was a significant interaction between the irrigation treatments and soil textures that the highest fresh yield was obtained under FI in loamy sand. Furthermore, analysis across the soil textures showed that water productivities, WP (kg ha−1 fresh tuber yield mm−1 ET) were not significantly different between the irrigation treatments. However, across the irrigation treatments, the soil textures were significantly different. This showed that the interaction between irrigation treatments and soil textures was significant that the highest significant WP was obtained under DI in sandy loam. While PRD and DI treatments increased WP by, respectively, 11 and 5% in coarse sand and 28 and 36% in sandy loam relative to FI, they decreased WP in loamy sand by 15 and 13%. The reduced WP in loamy sand was due to nearly 28% fresh tuber yield loss in PRD and DI relative to FI even though ET was reduced by 9 and 11% in these irrigation treatments. This study showed that different soils will affect water-saving irrigation strategies that are worth knowing for suitable agricultural water management. So, under non-limited water resources conditions, loamy sand produces the highest yield under full irrigation but water-saving irrigations (PRD and DI) are not recommended due to considerable loss (28%) in yield. However, under restricted water resources, it is recommended to apply water-saving irrigations in sandy loam and coarse sand to achieve the highest water productivity.  相似文献   
996.
Water scarcity and soil nitrogen (N) loss are important limitations for agricultural production in semi-arid region especially for rice production. Zeolite (Z) as a soil conditioner can be used to retrain water and nitrogen in near-surface soil layer in lowland rice production system. The objectives of this study were to investigate the effects of different application rates of natural zeolite (clinoptilolite) and nitrogen on rice yield, yield components, soil nitrogen, water use, water productivity in a silty clay soil in 2004 and 2005. Zeolite was only applied in the first year. In order to study the long-term and continuous effect of zeolite on the objectives of the study, no zeolite was applied in the second year and the study was conducted on the same land as the first year. Zeolite and N were applied at rates of 0, 2, 4, and 8 t ha−1 and 0, 20, 40, and 80 kg ha−1, respectively in 2004. In 2005, each plot received the same amount of N as received in 2004. It is concluded that by decreasing N application rates, higher Z application rate is needed to improve grain yield. Highest grain yield was obtained at N application rate of 80 kg ha−1 and Z application rate of 4 t ha−1. Higher grain yield was mostly attributed to lower unfilled grain percentage and higher 1000-grain weight that were a result of higher N application rate and N retention in soil due to Z application. Nitrogen and Z applications resulted in higher grain protein contents and nitrogen recovery efficiency (NRE). Based on these results and due to higher N retention in soil under Z application, improved grain yield quality, nitrogen-use efficiency (NUE), and nitrogen recovery efficiency (NRE) could be obtained at Z application rate of 8 t ha−1 and N application rate of 80 kg ha−1 or more. However, this was not satisfied for NUE. Moreover, it is found that at higher N application rates lower Z application rates are needed to effectively retain soil residual mineral nitrogen. Furthermore, at N application rates of 80 kg ha−1 or more, Z application increased soil water retention and resulted in lower seasonal water use and higher water productivity. In general, it was concluded that the effect of Z application in retaining soil N was also effective in the second year.  相似文献   
997.
This paper examines the changing profile of water traders (both allocation and entitlement traders) in the Goulburn-Murray Irrigation District in Australia, and examines the efficiency of the water allocation and entitlement markets from 1998-99 to 2003-06. The results suggest that the profile of traders in the early and mature stages of the water allocation market differ greatly. In addition, the profile of allocation traders is significantly dissimilar from that of water entitlement traders at all stages of water market development. The decision to buy or sell water allocations was more likely to be associated with a farmer's socioeconomic characteristics and the type of farm, while the decision to buy or sell water entitlements was more likely to be associated with the extent of existing farm infrastructure and farm productivity. Finally, there was strong evidence to suggest that trading in the water allocation market has become more efficient over time, though there is no evidence to suggest the same for the water entitlement market.  相似文献   
998.
The growing pressure on fresh water resources demands that agriculture becomes more productive with its current water use. Increasing water productivity is an often cited solution, though the current levels of water productivity are not systematically mapped. A global map of water productivity helps to identify where water resources are productively used, and identifies places where improvements are possible. The WATPRO water productivity model for wheat, using remote sensing data products as input, was applied at a global scale with global data sets of the NDVI and surface albedo to benchmark water productivity of wheat for the beginning of this millennium. Time profiles of the NDVI were used to determine the time frame from crop establishment to harvest on a pixel basis, which was considered the modelling period. It was found that water productivity varies from approximately 0.2 to 1.8 kg of harvestable wheat per cubic metre of water consumed. From the 10 largest producers of wheat, France and Germany score the highest country average water productivity of 1.42 and 1.35 kg m−3, respectively. The results were compared with modelling information by Liu et al. (2007) who applied the GEPIC model at a global scale to map water productivity, and by Chapagain and Hoekstra (2004) who used FAO statistics to determine water productivity per country. A comparison with Liu et al. showed a good correlation for most countries, but the correlation with the results by Chapagain and Hoekstra was less obvious. The global patterns of the water productivity map were compared with global data sets of precipitation and reference evapotranspiration to determine the impact of climate and of water availability reflected by precipitation. It appears that the highest levels of water productivity are to be expected in temperate climates with high precipitation. Due to its non-linear relationship with precipitation, it is expected that large gains in water productivity can be made with in situ rain water harvesting or supplemental irrigation in dry areas with low seasonal precipitation. A full understanding of the spatial patterns by country or river basin will support decisions on where to invest and what measures to take to make agriculture more water productive.  相似文献   
999.
Aloe barbadensis Miller, known as Aloe Vera, requires limited irrigation depending on the capacity of the soil to retain humidity, since it is a CAM species and thus naturally adapted to conditions of dryness and high temperatures. Therefore, we postulated that plants of Aloe Vera plants under conditions of water deficit should improve their water use efficiency (WUE) by performing osmotic adjustment (OA) with a temporal correlation between WUE and OA. The objective of the investigation was to determine the effect of water restriction on the WUE and OA of A. barbadensis under different water treatments. 18-month old Aloe Vera plants were cultivated in pots with a soil substrate that was a mixture of equal parts of sand and organic matter with 18% of FC and 9% of permanent wilting point. To determine the effects of the soil humidity on plant WUE and OA, four treatments were arranged in a complete random design with four repetitions; these were 100%, 75%, 50% and 25% of FC, which correspond to an evatranspiration of 11.4, 9.6, 4.0 and 1.7 L per plant, respectively. The water treatments were maintained by frequent irrigation. The following variables were determined: dry matter, leaf water potential, relative water content (RWC), amount of gel produced, sap flow, proline content, soluble and total sugars and oligo and polyfructans. Aloe Vera increased WUE with increasing water deficit; the sap flow rate decreased with water restrictions, and the plants performed osmotic adjustment by increasing the synthesis of proline, soluble and total sugars as well as the amounts of oligo and polyfructans, mainly polymers of β-(2 → 6) kestotriose, changing from the inulin type to the neofructan type. The plants most and less irrigated (100% and 25% of FC) were the groups with lowest WUE. The plants irrigated with 75% of FC presented the best WUE in terms of dry mass and amount of gel produced by a litre of supplied water.  相似文献   
1000.
Rainwater harvesting (RWH), the small-scale collection and storage of runoff to augment groundwater stores, has been seen as a solution to the deepening groundwater crisis in India. However, hydrological impacts of RWH in India are not well understood, particularly at the larger catchment-scale. A key element to grasping RWH impact involves understanding the generated recharge variability in time and space, which is the result of variability in rainfall-runoff and efficiency of RWH structures. Yet there are very few reported empirical studies of the impact of RWH. Catchment-scale impacts are best studied using a water balance model, which would require a basic level of field data and understanding of the variability. This study reports the results of a 2-year field study in the 476 km2 semi-arid Arvari River catchment, where over 366 RWH structures have been built since 1985. Difficulties associated with working in semi-arid regions include data scarcity. Potential recharge estimates from seven RWH storages, across three different types and in six landscape positions, were calculated using the water balance method. These estimates were compared with recharge estimates from monitored water levels in 29 dug wells using the water table fluctuation method. The average daily potential recharge from RWH structures varied between 12 and 52 mm/day, while estimated actual recharge reaching the groundwater ranged from 3 to 7 mm/day. The large difference between recharge estimates could be explained through soil storage, local groundwater mounding beneath structures and a large lateral transmissivity in the aquifer. Overall, approximately 7% of rainfall is recharged by RWH in the catchment, which was similar in the comparatively wet and dry years of the field analysis. There were key differences between RWH structures, due to engineering design and location. These results indicate that recharge from RWH affects the local groundwater table, but also has potential to move laterally and impact surrounding areas. However, the greatest weakness in such analysis is the lack of information available on aquifer characteristics, in addition to geology and soil type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号