首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19117篇
  免费   1180篇
  国内免费   1640篇
林业   1132篇
农学   800篇
基础科学   630篇
  11797篇
综合类   5451篇
农作物   735篇
水产渔业   33篇
畜牧兽医   700篇
园艺   372篇
植物保护   287篇
  2024年   138篇
  2023年   370篇
  2022年   505篇
  2021年   481篇
  2020年   476篇
  2019年   518篇
  2018年   426篇
  2017年   745篇
  2016年   915篇
  2015年   812篇
  2014年   943篇
  2013年   1019篇
  2012年   1226篇
  2011年   1556篇
  2010年   1196篇
  2009年   1322篇
  2008年   1306篇
  2007年   1362篇
  2006年   1189篇
  2005年   974篇
  2004年   682篇
  2003年   615篇
  2002年   392篇
  2001年   332篇
  2000年   305篇
  1999年   269篇
  1998年   258篇
  1997年   229篇
  1996年   244篇
  1995年   216篇
  1994年   184篇
  1993年   184篇
  1992年   132篇
  1991年   100篇
  1990年   136篇
  1989年   65篇
  1988年   48篇
  1987年   43篇
  1986年   15篇
  1985年   8篇
  1963年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
 Rice seedling growth, estimated by plant height and root development and discoloration, was better in pasteurized soil than in unpasteurized soil obtained from a flooded rice field. Rice seedlings also grew better in sterilized soil modified by adding roots harvested from the pasteurized soil than in soil modified by adding roots harvested from the unpasteurized soil. The results demonstrate that seedling growth in the rice field soil was inhibited by soil microorganisms, even though no typical symptoms such as seedling blight or damping-off appeared. Pythium aristosporum is suggested to be involved in the inhibition. Thus, it appears that inconspicuous restraint of rice seedling growth could occur in soils of rice paddy fields. Received: May 20, 2002 / Accepted: October 16, 2002 Acknowledgments The authors thank Dr. T. Ichitani, former professor at Osaka Prefectural University, for providing an isolate of Pythium aristosporum for comparison, and Mr. Mitsuaki Sato of Akita Prefectural College of Agriculture for technical assistance.  相似文献   
22.
日光温室土壤盐分和养分的变化趋势   总被引:8,自引:0,他引:8  
对种植 1~ 8a的日光温室土壤盐分和养分进行了调查研究 ,结果表明 ,随着日光温室种植年限的延长 ,土壤可溶性盐、电导率、养分含量呈增加趋势 ,酸碱度 (pH)呈降低趋势 ,有机质含量增幅不大 ;土壤速效养分中硝态氮含量过高 ,速效磷含量也很丰富。最后提出了温室土壤培肥和管理措施。  相似文献   
23.
不同覆土深度对鸡腿菇子实体产量的影响   总被引:7,自引:1,他引:7  
本试验研究 11种覆土深度对鸡腿菇子实体产量影响。结果表明 ,不同覆土深度对子实体产量、有效子实体数和幼蕾数均存在显著的影响。覆土越厚 ,幼蕾数越少。当覆土深度在 0 5~ 3cm时 ,子实体产量和有效子实体数随着覆土层的加厚逐渐增加 ,在覆土深度为 3cm时达到最大值 ,覆土深度大于 3cm时 ,则随着覆土层的加厚而逐渐减少。从生产的角度看 ,覆土 3cm是比较适宜的覆土深度 ,此时的子实体产量最高。  相似文献   
24.
本文根据作者的观察和测量,对西安市白鹿塬塬区的土壤侵蚀状况进行了研究。研究表明,白鹿塬塬区确定土壤侵蚀的主要依据是土层厚度的变化,并非侵蚀面。塬区侵蚀是塬边侵蚀较强,向塬里侵蚀逐渐减弱。塬面上高地侵蚀弱,低地侵蚀强,暂时性线状流水长期汇集而成的冲沟对黄土塬区土壤的侵蚀更加强烈。气候对土壤侵蚀也有影响,冷干和温湿气候均会产生土壤侵蚀,冷干期侵蚀量比温湿期大,前者侵蚀厚度比后者大7倍多。  相似文献   
25.
根据不同退化程度草原和不同开垦年限农田土壤137Cs放射强度分析结果表明:与轻度退化草原相比,中度退化和重度退化中的137Cs放射强度分别下降了21%和52%。草原土壤开垦后,137Cs放射强度明显下降,开垦7年、15年、33年后,137Cs的放射强度分别只有轻度退化草原的37%、31%和26%。相关分析表明,伴随着土壤侵蚀的发生,土壤有机质含量、全N含量以及阳离子交换量下降。137Cs放射强度与土壤有机碳、土壤全N、交换性K和阳离子交换量呈极显著的正相关。  相似文献   
26.
三江源区土壤侵蚀变化及驱动因素分析   总被引:5,自引:0,他引:5  
曹巍  刘璐璐  吴丹 《草业学报》2018,27(6):10-22
采用修正通用土壤流失方程(revised universal soil loss equation, RUSLE)对三江源区1997-2012年的土壤侵蚀模数和土壤侵蚀量进行定量模拟,并对其生态工程实施前、后时空变化特征进行对比分析,采用空间叠加法分析降雨侵蚀力及植被覆盖度对土壤侵蚀状况的影响,利用模型参数控制法对气候变化和生态工程对土壤侵蚀变化的贡献率进行分析。结果表明:1)生态工程实施后,三江源区土壤侵蚀增加的趋势尚未得到遏制,多年平均年土壤侵蚀模数和侵蚀量较工程实施前增加6.5%,但局部地区土壤侵蚀状况有所好转,约占总面积的45%;2)长江流域在工程实施后的土壤侵蚀量与工程实施前基本持衡;黄河流域土壤侵蚀量增加明显,增幅超过45%;澜沧江流域土壤侵蚀量有所下降,降幅为9.8%;3)降水增强导致土壤侵蚀加剧的贡献率达到180%,植被恢复对土壤侵蚀变化的贡献率为-80%。全面遏制三江源区土壤侵蚀增加趋势,仍需持续努力。  相似文献   
27.
《Veterinary parasitology》2015,207(1-2):64-71
Syngamus trachea is a pathogenic tracheal nematode that causes syngamiasis in wild and game birds, especially when birds are managed at high densities. Despite its pathogenic nature, very little is known about its epidemiology and relationship with ambient temperature and humidity. The spatial and temporal modelling of disease was undertaken on two pheasant estates within the South West of England from April 2014 to August 2014. Significant differences between the mean numbers of eggs per gram of soil were identified between pens at both site 1 and site 2 but did not differ significantly between sites. Egg abundance was significantly associated with soil moisture content, with greater egg survival between years in pens with higher average volumetric soil moisture content. Previous years stocking density and pen age were also associated with greater egg survival between years with more eggs being recovered in pens with greater stocking densities, and pens that had been sited longer. The greatest model to explain the variation in the numbers of eggs per gram of soil per pen was a combination of soil moisture content, stocking density and pen age.Larval recovery differed significantly between sites. Larval abundance was significantly and positively associated with temperature and relative humidity at site 1. Similarly, temperature and humidity were also positively and significantly associated with larval abundance at site 2. Rainfall did not influence larval recovery at either site 1 or site 2. The model with the greatest ability to explain larval abundance at both sites, was a combination of temperature, humidity and rainfall. Infection status (positive faecal egg counts) was significantly and positively associated with larval abundance at both sites, but rainfall was only positively associated at site 1. Temperature and humidity were positively associated with infection status at site 2, but not at site 1. The present study highlights the influence of climatic variables on both egg survival and larval abundance, and could therefore be used to develop more targeted treatment strategies around periods of higher disease risk. The frequent use of release pens is a clear factor in the epidemiology of syngamiasis, and it is recommended that pens be rested and/or rotated in order to reduce infection pressure in subsequent flocks.  相似文献   
28.
黄土高原人工灌草系统不同立地条件土壤种子库特征   总被引:2,自引:0,他引:2  
本研究通过野外调查取样与室内试验相结合,连续两年对黄土高原人工灌草系统不同坡向、坡位进行取样,以期对该区土壤种子库的物种组成、密度特征及其物种多样性进行初步了解。研究结果表明:该人工灌草生态系统土壤种子库共有9科,15种,其组成因坡位、坡向以及年份而异;坡向、坡位均显著影响土壤种子库物种多样性指数、丰富度指数与土壤种子库密度(P<0.05),土壤种子库密度为3 218~5 492粒·m-2,总体呈现为阴坡显著高于阳坡(P<0.05),下坡位显著高于上坡位(P<0.05);坡位和坡向均对物种均匀性系数无显著影响;年份对土壤种子库无显著影响。上述研究可为黄土高原人工灌草系统的可持续利用与恢复提供参考依据。  相似文献   
29.
In Central Europe, various plant species including large-grain legumes and their mixtures are grown as catch crops, particularly between grains harvested early and subsequent summer crops. This article investigates the question of how soil structure in the topsoil is influenced when catch cropping with large-grain legumes (experimental factor A: without catch crop, with catch crop) under different ploughless tillage conditions during catch crop seeding (experimental factor B: deep tillage/25–30 cm, shallow tillage/8–10 cm). Five one-year trials were performed using standard machinery at various sites in Germany. Soil core samples extracted from the topsoil in the spring after catch crop cultivation served to identify air capacity, saturated hydraulic conductivity and precompression stress. The above-ground and below-ground biomass yields of the catch crops were also determined at most of the sites. In addition, the soil compaction risk for the working steps in the experiments was calculated using the REPRO model.The dry matter yield of the catch crops varied considerably between the individual trial sites and years. In particular, high levels of dry matter were able to form in the case of early seeding and a sufficient supply of precipitation. The soil structure was only rarely affected positively by catch crop cultivation, and catch crops did not contribute in the short term to loosening already compacted topsoils. In contrast, mechanical soil stresses caused by driving over the ground and additional working steps used in cultivating catch crops often led to lower air capacity in these treatments. This is consistent with the soil compaction risks calculated using the REPRO model, which were higher in the treatments with catch cropping. Catch crop cultivation also only resulted in improved mechanical stability at one location. The positive effect of deep ploughless tillage on air capacity and saturated hydraulic conductivity, however, became more clearly evident regardless of catch crop cultivation. In order for catch crop cultivation with large-grain legumes to be able to have a favourable impact on soil structure, it is therefore important that cultivating them does not result in any new soil compaction. In the conditions evaluated, deep tillage was more effective at loosening compacted topsoil than growing catch crops.  相似文献   
30.
Benefits of organic farming on soil fauna have been widely observed and this has led to consider organic farming as a potential approach to reduce the environmental impact of conventional agriculture. However, there is still little evidence from field conditions about direct benefits of organic agriculture on soil ecosystem functioning. Hence, the aims of this study were to compare the effect of organic farming versus conventional farming on litter decomposition and to study how this process is affected by soil meso- and macrofauna abundances. Systems studied were: (1) organic farming with conventional tillage (ORG), (2) conventional farming with conventional tillage (CT), (3) conventional farming under no-tillage (NT), and (4) natural grassland as control system (GR). Decomposition was determined under field conditions by measuring weight loss in litterbags. Soil meso- and macrofauna contribution on decomposition was evaluated both by different mesh sizes and by assessing their abundances in the soil. Litter decomposition was always significantly higher after 9 and 12 months in ORG than in CT and NT (from 2 to 5 times in average), regardless decomposer community composition and litter type. Besides, mesofauna, macrofauna and earthworm abundances were significantly higher in ORG than in NT and CT (from 1.6 to 3.8, 1.7 to 2.3 and 16 to 25 times in average, respectively for each group). These results are especially relevant firstly because the positive effect of ORG in a key soil process has been proved under field conditions, being the first direct evidence that organic farming enhances the decomposition process. And secondly because the extensive organic system analyzed here did not include several practices which have been recognized as particularly positive for soil biota (e.g. manure use, low tillage intensity and high crop diversity). So, this research suggests that even when those practices are not applied, the non-use of agrochemicals is enough to produce positive changes in soil fauna and so in decomposition dynamics. Therefore, the adoption of organic system in an extensive way can also be suggested to farmers in order to improve ecosystem functioning and consequently to achieve better soil conditions for crop production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号