首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
农学   15篇
  1篇
农作物   2篇
植物保护   20篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
31.
This is the first report of variability in sensitivity of Phaeosphaeria nodorum to the fungicide azoxystrobin, and also reports on sensitivity to propiconazole, prothioconazole and cyprodinil. An in vitro sensitivity test of 42 isolates from five Swedish winter wheat fields, collected in 2003–2005, was performed on malt extract agar amended with six concentrations of each fungicide. Four isolates collected during the early 1990s, before azoxystrobin had been commercially used in agriculture, were used as references. Fragments of DNA from 231 isolates, including the reference isolates, were sequenced for the genes of cytochrome b and CYP51 in search for amino acid substitutions known to cause loss of sensitivity to strobilurins and triazoles, respectively. The majority of the P. nodorum isolates possessed the amino acid substitution G143A, associated with loss of sensitivity in fungi to strobilurins, except in one field where only half of the isolates had the substitution. The EC50 values varied between 0·66 mg L−1 to estimations far above 1000 mg L−1, with an estimated median value of 366 mg L−1. The EC50 values of the reference isolates ranged from 0·02 to 80·72 mg L−1. The P. nodorum population is still sensitive to propiconazole, prothioconazole and cyprodinil, even though some isolates varied in sensitivity to triazoles. Part of the CYP51 gene, a possible target for triazole sensitivity, was sequenced but no nonsynonymous substitutions were found.  相似文献   
32.
33.
Summary The bread wheat cultivars Pasqua and Katepwa, and durum wheat cultivars Kyle and D8257 were used to test the effects of sowing Phaeosphaeria nodorum-shrivelled seed. In a controlled environment, emergence, tillering, and dry weight of seedlings were compared at two sowing depths. Emergence, tillering and plant dry weights were also determined in field plots in 1992 and 1993, as were yield and thousand kernel weight (TKW) in plants inoculated with P. nodorum. Under controlled conditions the level of shrivelling did not affect emergence at depths of 25 mm and, except for Katepwa, 50 mm. Deeper seeding reduced emergence regardless of the level of shrivelling. Seeding depth did not affect dry weight of roots and shoots and the effect on tillering was inconsistent in the two years. Dry root weight was positively correlated with original seed size and decreased with level of shrivelling. In the field, seedling emergence of severely shrivelled seed was significantly lower in Katepwa and Pasqua. Tillers per plant appeared to increase with increased level of shrivelling, but was significant only for D8257 in one year. Dry tiller weight was inversely related to tillering and decreased consistently with level of shrivelling. Excepting Pasqua, in one year, yield and TKW did not differ between plots originating from plump or shrivelled seed. Inoculation with P. nodorum caused a significant reduction in TKW and yield in all cultivars but Kyle. Seed shrivelled due to P. nodorum was in general found to be as suitable as plump seed for growing a wheat crop.  相似文献   
34.
W. Lange    M. Oleo    Th. S. M. De  Bock  M. D''Haeseleer  M. Jacobs 《Plant Breeding》1993,111(3):177-184
Resistance to Septoria nodorum was investigated in seedlings of an amphiploid generated from Triticum dicoccum Shübl. and Aegilops squarrosa Tausch, and in a series of substitution lines of single chromosomes from this synthetic hexaploid into Triticum aestivum cv. ‘Chinese Spring’ in three tests to determine the chromosomal location of resistance. From the Ae. squarrosa parent (D genome), chromosome 5D was found to confer a high level of resistance, reducing lesion cover to near that of the amphiploid in the three tests. Chromosomes 3D, and to a lesser extent, 7D were also found to confer significant resistance to the amphiploid. Three chromosomes, 2A, 3B and 5A, from the T. dicoccum parent (AB genomes) also conferred resistance but to a lesser extent than 7D. Two chromosomes, 2B and 2D, caused a significant decrease in resistance. ‘Chinese Spring’ may thus carry genes for resistance to S. nodorum on these chromosomes which are absent in the synthetic hexaploid.  相似文献   
35.
Summary Seven soft red winter wheat cultivars were evaluated for partial resistance to Leptosphaeria nodorum under field conditions. The results demonstrate that resistance is available among cultivars that are adapted to the southeastern U.S. and that resistance is long lasting. Resistant cultivars had longer incubation and latent periods, slower rates of lesion development, and reduced the level of sporulation of L. nodorum. Seedlings of susceptible cultivars sustained severe disease with dew periods as short as 48 hr in greenhouse tests. One resistant cultivar sustained little damage with dew period as long as 144 hr.Latent period was shortest on the second leaf below the flag leaf (F-2 leaf) of all cultivars and longest on the flag leaf which reflected the effect of microclimate and leaf age. The range in length of latent period on the flag, F-1, and F-2 leaves of resistant cultivars was less than that for susceptible cultivars. Differences between cultivars were greatest (up to 6.8 days) for the F-2 leaf. A delay in production of inoculum on the F-2 and lower leaves of resistant cultivars should delay infection of the flag leaf and spike.The greatest differentiation among cultivars for sporulation of L. nodorum was on upper leaves at Feekes growth stage 11.2. Oasis consistently had less sporulation than other cultivars at all sampling dates and leaf positions. The rate of disease progress up the plant (disease severity) and area under the disease progress curve were also least on Oasis.There were significant correlations among components of resistance and associated components suggesting that a single or interrelated mechanisms control expression of resistance. Overall, Oasis was the most resistant cultivar followed by Coker 762 and Coker 747. There cultivars have remained resistant for ten or more years. Stacy was intermediate in resistance and was the most variable of the seven cultivars for the components tested. Holley, Omega 78, and Florida 301 were highly susceptible by all criteria tested. Plant height was not a factor in resistance. The resistant cultivars are mostly later in maturity than the susceptible cultivars. In this study, crop maturity was similar under existing environmental conditions during the two seasons when most data were collected.  相似文献   
36.
H. Walther 《Plant Breeding》1990,105(1):53-61
A yield-based assessment procedure for breeding for resistance to Septoria nodorum (SN) is presented. Artificially infected as well as fungicide-protected plots were analyzed for each genotype. Considerable increase in precision of disease scores was gained by using an assessment matrix for different plant organs and time intervals during disease development. This technique resulted in yield loss: disease attack correlations up to r = 0.85:** and raised coefficients of heritability (h2b= broad sense heritability) with h2b= 0.72 for % yield loss and h2b= 0.86 for SN-attack, calculated for a 3-year replicated field experiment with 105 winter wheat cultivars.  相似文献   
37.
Summary On average, the cereal species studied were susceptible to septoria nodorum blotch (SNB), except for spring triticale on leaf and head and winter titicale on leaf, that appeared to be significantly more resistant, than the other ones.In all three species the SNB response of the adult plants was to a limited extent only predicted by the reaction on first leaf seedlings. In most cases it was impossible to predict the response to SNB of adult plants on the basis of seedling reaction. Correlations between the adult plant stage and the seedling stage, or detached seedling leaves, appears not to be sufficient for use in practical breeding work. A reversal of reaction to SNB was even found between the above growth stages in studied spring and winter wheat varieties.  相似文献   
38.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号