首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2035篇
  免费   72篇
  国内免费   109篇
林业   42篇
农学   67篇
基础科学   14篇
  1372篇
综合类   444篇
农作物   64篇
水产渔业   38篇
畜牧兽医   134篇
园艺   34篇
植物保护   7篇
  2024年   21篇
  2023年   24篇
  2022年   46篇
  2021年   54篇
  2020年   44篇
  2019年   51篇
  2018年   29篇
  2017年   48篇
  2016年   67篇
  2015年   120篇
  2014年   106篇
  2013年   89篇
  2012年   99篇
  2011年   155篇
  2010年   142篇
  2009年   152篇
  2008年   98篇
  2007年   151篇
  2006年   138篇
  2005年   90篇
  2004年   94篇
  2003年   58篇
  2002年   14篇
  2001年   11篇
  2000年   39篇
  1999年   41篇
  1998年   18篇
  1997年   29篇
  1996年   39篇
  1995年   34篇
  1994年   20篇
  1993年   15篇
  1992年   20篇
  1991年   15篇
  1990年   11篇
  1989年   14篇
  1988年   9篇
  1987年   9篇
  1986年   1篇
  1985年   1篇
排序方式: 共有2216条查询结果,搜索用时 421 毫秒
61.
经 8年系统试验研究从 330个细菌菌株中筛选出 1株防病促生枯萎病拮抗菌“98 Ⅰ” ,经鉴定属蜡质芽孢杆菌。该菌对黄瓜枯萎病、西瓜枯萎病、青椒枯萎病和番茄枯萎病 4种土传病害均有显著防治效果 ,其平皿孢子萌发抑制率分别为 79 2 %、75 1%、72 3%和 95 7% ,且该菌对多种蔬菜有促生和促进种子发芽功效。  相似文献   
62.
Intensive tillage for annual crop production may be affecting soil health and quality. However, tillage intensity effects on biological activities of volcanic-derived soils have not been systematically investigated. We evaluated the effects of three different tillage practices on some biological activities of an Ultisol from southern Chile during the third year of a wheat–lupin–wheat crop sequence. Treatments were: no tillage with stubble burning (NTB), no tillage without stubble burning (NT) and conventional tillage with disk-harrowing and stubble burning (CT). Biological activities were evaluated in winter and summer at 0–200 mm and at three soil depths (0–50, 50–100 and 100–200 mm) in winter. Total organic C and N were significantly higher under no-tillage systems than CT. In general, NT increased C and N of microbial biomass in comparison with CT, especially in winter. Microbial biomass C was closely associated with microbial biomass N (r = 0.986, P < 0.05); acid phosphomonoesterase (r = 0.999, P < 0.05); β-glucosidase (r = 0.978, P < 0.05), and others. Changes in biological activities occurred mainly in the upper soil layer (0–50 mm depth) in spite of the short duration of the experiment. Biological activities could be used as practical biological indicators to apply the more appropriate management systems for increasing soil sustainability or productivity.  相似文献   
63.
Long-term effects of high Cd concentrations on enzyme activities, microbial biomass and respiration and bacterial community structure of soils were assessed in sandy soils where Cd was added between 1988 and 1990 as Cd(NO3)2 to reach concentrations ranging from 0 to 0.36 mmol Cd kg−1 dry weight soil. Soils were mantained under maize and grass cultivation, or ‘set-aside’ regimes, for 1 year. Solubility of Cd and its bioavailability were measured by chemical extractions or by the BIOMET bacterial biosensor system. Cadmium solubility was very low, and Cd bioavailability was barely detectable even in soils polluted with 0.36 mmol Cd kg−1. Soil microbial biomass carbon (BC) was slightly decreased and respiration was increased significantly even at the lower Cd concentration and as a consequence the metabolic quotient (qCO2) was increased, indicating a stressful condition for soil microflora. However, Cd-contaminated soils also had a lower total organic C (TOC) content and thus the microbial biomass C-to-TOC ratio was unaffected by Cd. Alkaline phosphomonoesterase, arylsulphatase and protease activities were significantly reduced in all Cd-contaminated soils whereas acid phosphomonoesterase, β-glucosidase and urease activites were unaffected by Cd. Neither changes in physiological groups of bacteria, nor of Cd resistant bacteria could be detected in numbers of the culturable bacterial community. Denaturing gradient gel electrophoresis analysis of the bacterial community showed slight changes in maize cropped soils containing 0.18 and 0.36 mmol Cd kg−1 soil as compared to the control. It was concluded that high Cd concentrations induced mainly physiological adaptations rather than selection for metal-resistant culturable soil microflora, regardless of Cd concentration, and that some biochemical parameters were more sensitive to stress than others.  相似文献   
64.
乔洁  毕利东  张卫建  沈仁芳  张斌  胡锋  刘艳丽 《土壤》2007,39(5):772-776
利用化肥长期定位试验,研究了施肥对土壤微生物生物量、活性及其群落结构的影响.结果表明:与不施肥相比,长期施用化肥不仅增加了土壤微生物生物量,而且导致了土壤微生物群落结构的分异.其中,有机无机配施处理和2倍NPK配施处理显著提高了土壤有机质含量、全N含量、土壤微生物生物量和土壤微生物活性.NPK均衡施肥处理对土壤有机质、土壤微生物生物量及其活性的影响小于非均衡施肥的处理(NP、NK、N、P、K),适当增施K肥有利于提高土壤微生物中真菌的比例.  相似文献   
65.
Anthropogenic conversion of primary forest to pasture for cattle production is still frequent in the Amazon Basin. Practices adopted by ranchers to restore productivity to degraded pasture have the potential to alter soil N availability and N gas losses from soils. We examined short-term (35 days) effects of tillage prior to pasture re-establishment on soil N availability, CO2, NO and N2O fluxes and microbial biomass C and N under degraded pasture at Nova Vida ranch, Rondônia, Brazilian Amazon. We collected soil samples and measured gas fluxes in tilled and control (non tilled pasture) 12 times at equally spaced intervals during October 2001 to quantify the effect of tillage. Maximum soil NH4+ and NO3 pools were 13.2 and 6.3 kg N ha−1 respectively after tillage compared to 0.24 and 6.3 kg N ha−1 in the control. Carbon dioxide flux ranged from 118 to 181 mg C–CO2 m2 h−1 in the control (non-tilled) and from 110 to 235 mg C–CO2 m2 h−1 when tilled. Microbial biomass C varied from 365 to 461 μg g−1 in the control and from 248 to 535 μg g−1 when tilled. The values for N2O fluxes ranged from 1.22 to 96.9 μg N m−2 h−1 in the tilled plots with a maximum 3 days after the second tilling. Variability in NO flux in the control and when tilled was consistent with previous measures of NO emissions from pasture at Nova Vida. When tilled, the NO/N2O ratio remained <1 after the first tilling suggesting that denitrification dominated N cycling. The effects of tilling on microbial parameters were less clear, except for a decrease in qCO2 and an increase in microbial biomass C/N immediately after tilling. Our results suggest that restoration of degraded pastures with tillage will lead to less C matter, at least initially. Further long-term research is needed.  相似文献   
66.
多氯联苯复合污染土壤的土著微生物修复强化措施研究   总被引:10,自引:1,他引:10  
滕应  骆永明  李振高  邹德勋 《土壤》2006,38(5):645-651
通过室内模拟试验,以不同C源、C/N比、水分及通透性为调控因子,对多氯联苯(PCBs)长期复合污染土壤的土著微生物强化修复进行了初步研究。结果表明,PCBs长期复合污染土壤中,在土壤水分含量为田间持水量的60%时,加入淀粉、葡萄糖和琥珀酸钠均在一定程度上增加了细菌和真菌数量,从而促进土壤中PCBs的土著微生物降解。不同种类的C源对PCBs污染土壤的土著微生物降解效果存在明显差异,且其降解效果与C源的施用剂量密切相关。当淀粉加入量为C1.0g/kg土时,土壤中PCBs的降解效果较好,而葡萄糖和琥珀酸钠加入量为C0.2g/kg土时,PCBs的降解效果明显。土壤C/N比为10:1的处理效果优于C/N比为25:1和40:1。土壤人为翻动有利于PCBs污染土壤中细菌和真菌的生长,提高土著微生物的代谢活性,从而促进土壤中PCBs的自然降解。这为进一步探讨加速土壤中PCBs降解的最适条件和研发POPs污染土壤的生物修复技术提供了科学依据。  相似文献   
67.
DEHP对土壤脱氢酶活性及微生物功能多样性的影响   总被引:26,自引:4,他引:26       下载免费PDF全文
秦华  林先贵  陈瑞蕊  尹睿 《土壤学报》2005,42(5):829-834
选用肥熟旱耕人为土(黄棕壤),设置了在土壤中施加100 mg kg-1 DEHP与不施加DEHP两个水平,盆栽试验研究了DEHP对土壤脱氢酶活性以及土壤微生物群落功能多样性的影响,以及植物在污染土壤中的修复作用。结果表明,施加DEHP显著抑制了土壤脱氢酶活性,30 d时与对照相比降低了约30%, 第60 d时尽管有缓慢的回升,但仍明显低于对照(p<0.05)。从BIOLOG反应的结果可以看出,DEHP也显著影响土壤微生物的功能多样性,土壤微生物群落的Shannon指数、Simpson指数、McIntosh指数和均度均显著低于无污染的对照,说明DEHP的污染导致了土壤微生物群落功能多样性的下降。种植植物对土壤脱氢酶和微生物活性有很明显的促进作用,并且在一定程度上缓解了DEHP的毒害作用,但并未消除DEHP对土壤微生物的影响。  相似文献   
68.
Although freeze-thaw cycles can alter soil physical properties and microbial activity, their overall impact on soil functioning remains unclear. This review addresses the effects of freeze-thaw cycles on soil physical properties, microorganisms, carbon and nutrient dynamics, trace gas losses and higher organisms associated with soil. I discuss how the controlled manipulation of freeze-thaw cycles has varied widely among studies and propose that, despite their value in demonstrating the mechanisms of freeze-thaw action in soils, many studies of soil freeze-thaw cycles have used cycle amplitudes, freezing rates and minimum temperatures that are not relevant to temperature changes across much of the soil profile in situ. The lack of coordination between the timing of soil collection and the season for which freeze-thaw cycles are being simulated is also discussed. Suggested improvements to future studies of soil freeze-thaw cycles include the maintenance of realistic temperature fluctuations across the soil profile, soil collection in the appropriate season and the inclusion of relevant surface factors such as plant litter in the fall or excess water in the spring. The implications of climate change for soil freeze-thaw cycles are addressed, along with the need to directly assess how changes in soil freeze-thaw cycle dynamics alter primary production.  相似文献   
69.
Previous studies have shown that soil fungal biomass increases towards more natural, mature systems. Shifts to a fungal-based soil food web have previously been observed with abandonment of agricultural fields and extensification of agriculture. In a previous field experiment we found increased fungal biomass with reduced N fertilisation. Here, we explore relationships between fungi, bacteria, N input and grassland age on real dairy farms in the Netherlands. We hypothesised that also in pastures that are still in production there is a negative relationship between fungal biomass and fertilisation, and that fungal biomass increases with grassland age in pastures that are still in production. We expected the fungal/bacterial biomass ratio to show the same responses, as this ratio has often been used as an indicator for management changes. We sampled 48 pastures from eight organic dairy farms. Sites differed in age and fertilisation rate. We determined fungal and bacterial biomass, as well as ergosterol (a fungal biomarker). Fungal and bacterial biomass and ergosterol, showed a negative relationship with N application rate, and correlated positively with organic matter percentage. In old pastures, fungal biomass and ergosterol were higher than in younger pastures. Because bacterial biomass responded in the same way as fungal biomass, the F/B ratio remained constant, and can therefore—in our data set—not be used as an indicator for changing management. We conclude that the changes in fungal and bacterial biomass were driven by changes in organic matter quality and quantity. The negative relationship we found between N application rate and fungal biomass adds to earlier work and confirms the presence of this relationship in pastures with relatively small differences in management intensities. Earlier studies on shifts in fungal biomass focused on ex-agricultural fields or restoration projects. Here we show that fungal biomass is also higher in older agricultural pastures.  相似文献   
70.
A 49-day incubation experiment was carried out with the addition of field-grown maize stem and leaf residues to soil at three different temperatures (5, 15, and 25 °C). The aim was to study the effects of two transgenic Bt-maize varieties in comparison to their two parental non-Bt varieties on the mineralization of the residues, on their incorporation into the microbial biomass and on changes in the microbial community structure. The stem and leaf residues of Novelis-Bt contained 3.9 μg g−1 dry weight of the Bt toxin Cry1Ab and those of Valmont-Bt only 0.8 μg g−1. The residues of the two parental non-Bt varieties Nobilis and Prelude contained higher concentrations of ergosterol (+220%) and glucosamine (+190%) and had a larger fungal C-to-bacterial C ratio (+240%) than the two Bt varieties. After adding the Bt residues, an initial peak in respiration of an extra 700 μg CO2-C g−1 soil or 4% of the added amount was observed in comparison to the two non-Bt varieties at all three temperatures. On average of the four varieties, 19-38% of the maize C added was mineralized during the 49-day incubation at the three different temperatures. The overall mean increase in total maize-derived CO2 evolution corresponded to a Q10 value of 1.4 for both temperature steps, i.e. from 5 to 15 °C and from 15 to 25 °C. The addition of maize residues led to a strong increase in all microbial properties analyzed. The highest contents were always measured at 5 °C and the lowest at 25 °C. The variety-specific contents of microbial biomass C, biomass N, ATP and adenylates increased in the order Novelis-Bt ? Prelude<Valmont-Bt ? Nobilis. The mineralization of Novelis-Bt residues with the highest Bt concentration and lowest N concentration and their incorporation into the microbial biomass was significantly reduced compared to the parental non-Bt variety Nobilis. These negative effects increased considerably from 5 to 25 °C. The transgenic Bt variety Valmont did not show further significant effects except for the initial peak in respiration at any temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号