首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2203篇
  免费   192篇
  国内免费   335篇
林业   47篇
农学   476篇
基础科学   2篇
  145篇
综合类   813篇
农作物   255篇
水产渔业   153篇
畜牧兽医   501篇
园艺   85篇
植物保护   253篇
  2024年   28篇
  2023年   71篇
  2022年   132篇
  2021年   147篇
  2020年   172篇
  2019年   150篇
  2018年   91篇
  2017年   129篇
  2016年   124篇
  2015年   104篇
  2014年   132篇
  2013年   115篇
  2012年   135篇
  2011年   147篇
  2010年   106篇
  2009年   117篇
  2008年   90篇
  2007年   108篇
  2006年   89篇
  2005年   72篇
  2004年   63篇
  2003年   47篇
  2002年   37篇
  2001年   38篇
  2000年   27篇
  1999年   28篇
  1998年   16篇
  1997年   24篇
  1996年   24篇
  1995年   19篇
  1994年   14篇
  1993年   15篇
  1992年   22篇
  1991年   11篇
  1990年   12篇
  1989年   14篇
  1988年   3篇
  1987年   9篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1982年   2篇
  1980年   3篇
  1978年   8篇
  1977年   4篇
  1976年   2篇
  1963年   1篇
  1962年   1篇
  1956年   3篇
  1955年   4篇
排序方式: 共有2730条查询结果,搜索用时 218 毫秒
211.
Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris is one of the major yield limiting factors in chickpea. The disease causes 10–90% yield losses annually in chickpea. Eight physiological races of the pathogen (0, 1A, 1B/C, 2, 3, 4, 5 and 6) are reported so far whereas additional races are suspected from India. The distribution pattern of these races in different parts of the world indicates regional specificity for their occurrence leading to the perception that F. oxysporum f. sp. ciceris evolved independently in different regions. Pathogen isolates also exhibit differences in disease symptoms. Races 0 and 1B/C cause yellowing syndrome whereas 1A, 2, 3, 4, 5 and 6 lead to wilting syndrome. Genetics of resistance to two races (1B/C and 6) is yet to be determined, however, for other races resistance is governed either by monogenes or oligogenes. The individual genes of oligogenic resistance mechanism delay onset of disease symptoms, a phenomenon called as late wilting. Slow wilting, i.e., slow development of disease after onset of disease symptoms also occurs in reaction to pathogen; however, its genetics are not known. Mapping of wilt resistance genes in chickpea is difficult because of minimal polymorphism; however, it has been facilitated to great extent by the development of sequence tagged microsatellite site (STMS) markers that have revealed significant interspecific and intraspecific polymorphism. Markers linked to six genes governing resistance to six races (0, 1A, 2, 3, 4 and 5) of the pathogen have been identified and their position on chickpea linkage maps elucidated. These genes lie in two separate clusters on two different chickpea linkage groups. While the gene for resistance to race 0 is situated on LG 5 of Winter et al. (Theoretical and Applied Genetics 101:1155–1163, 2000) those governing resistance to races 1A, 2, 3, 4 and 5 spanned a region of 8.2 cM on LG 2. The cluster of five resistance genes was further subdivided into two sub clusters of 2.8 cM and 2.0 cM, respectively. Map-based cloning can be used to isolate the six genes mapped so far; however, the region containing these genes needs additional markers to facilitate their isolation. Cloning of wilt resistance genes is desirable to study their evolution, mechanisms of resistance and their exploitation in wilt resistance breeding and wilt management.  相似文献   
212.
D. A. C. Pink  H. Lot  R. Johnson 《Euphytica》1992,63(1-2):169-174
Summary Resistance to lettuce mosaic virus (LMV) is derived either from cv. Gallega (g gene) or the wild accession PI251245 (mo gene). Previous studies indicated that these two genes were identical. Breeders in Europe produced numerous resistant cultivars utilisingg while in the USAmo was used. The resistance has been effective for over 20 years. However, recently there have been reports of LMV isolates causing unusually severe and sometimes necrotic symptoms on cultivars with these resistance genes. Investigations of these severe isolates have distinguished three new pathotypes in addition to the common pathotype (II) and identified a novel dominant gene for resistance. Themo/g genes confer resistance to pathotypes I and II but pathotype III possesses virulence for cultivars withg but not for those withmo. These two genes are therefore not identical but are probably either closely linked genes or alleles. Pathotype IV possesses virulence for all lettuce lines so far tested. Some isolates of this pathotype are seed transmitted in cultivars possessingmo org and have caused severe crop losses in southern France. The durability of the resistance conditioned by these two genes is discussed.  相似文献   
213.
The effect of major dwarfing genes on yield potential in spring wheats   总被引:1,自引:0,他引:1  
Summary A composite convergent cross of 16 spring wheat parents produced a set of unselected progeny lines among which the major dwarfing genes, Rht1, Rht2 and Rht3, were distributed against a common random genetic background. Random subsets of these lines were grown under irrigation and optimal conditions in 4 experiments with replicated bordered plots in southern New South Wales in order to measure the dwarfing gene effect on yield potential. The dwarfing gene composition of each line was determined by test crossing and seedling responsiveness to gibberellic acid.Lodging was negligible in the two experiments in 1982. While present in the two in 1983, it was not strongly associated with yield. Grain yield levels were appropriately high (mean 5.9 t/ha). In all but 1 experiment the Rht1+Rht2 dwarf genotypes gave highest yields while the Rht3 group yielded on average 3% lower, Rht2 9% lower, Rht1 11% lower, and the non-dwarf or tall group yielded 24% lower. These yield differences were positively associated with harvest index, kernels per m2 and kernels per spike, but negatively associated with mature plant height. Even within major dwarfing gene classes, grain yield was significantly and negatively associated with height.  相似文献   
214.
Summary Twenty-four entries of wild emmer possessing temperature-sensitive genes for resistance to yellow rust were studied in the seedling stage, at two temperature-profiles, with 15 pathogenic races from 11 countries in South America, Africa, Asia and Europe. It was shown that the majority of the resistance genes in these wild emmer entries were race-specific. In most of these entries a more resistant reaction was displayed at the higher temperature-profile; however in three entries a shift in reaction towards resistance was observed with certain races but towards susceptibility with some of the other races, suggesting that two different kinds of temperature-sensitive genes were involved in each of these entries. The similarity of temperature-sensitive genes occurring in wild emmer and in cultivated wheat is discussed.  相似文献   
215.
A. M. Abd El  -Moneim 《Plant Breeding》1993,110(2):168-171
Loss of seeds from mature pods is common in Vicia sativa L., an important annual, resown forage legume in West Asia and North Africa. Pod shattering restricts its use as a leguminous forage crop. This paper reports the results of germplasm evaluation for non-shattering pods and of breeding and selection to improve seed retention. Wide variation in pod-shattering exists between common vetch ecotypes collected from different regions. Three wild mutants with almost completely non-shattering pods were identified and isolated for use as a genetic resource in cross breeding programmes. Genetic studies revealed that the non-shattering character in the wild types of common vetch is due to a simple recessive gene, whereas shattering in the cultivated types is due to an allelic dominant pair of genes. Incorporation of the non-shattering gene into agronomically-promising lines was achieved by back-crossing. Lines having an average of 95—97 % non-shattering pods were obtained, as compared to 40—50 % in the original cultivated lines which represents a major agronomic advance in common vetch breeding. The importance of seed retention to the economics of seed production is discussed.  相似文献   
216.
Summary Improvement of durum wheat at the International Maize and Wheat Improvement Center (CIMMYT) was achieved by exploiting the variability of the tetraploid species in large numbers of combinations, and multi-location testing of germplasm on a world wide base. High yielding, widely adapted durums with short straw, good fertility, and adequate earliness were selected for distribution to major durum growing countries. Present attempts to improve durum wheat are directed at adjusting agronomic traits such as leaf angle and straw strength, and increasing spike fertility and spike size, thereby reaching higher grain numbers per unit area and higher yield potential. Diversification of the developmental pattern and incorporation of drought tolerance aim at further widening adaptation.  相似文献   
217.
J. Sutka 《Euphytica》1977,26(2):475-479
Summary The association of genes for purple pigment in the coleoptile with the chromosomes of the winter wheat variety Mironovskaya 808 was investigated using monosomic F2 analysis. The segregation ratio for F2 hybrids of Chinese Spring monosomics x Mironovskya 808 seems to indicate that the purple colour of the coleoptile is determined by two dominant genes, Rc3 and Rc4, which are located on the chromosomes 7D and 6B respectively, and which reinforce each other. Apart from these two genes, suppressors found on the chromosomes 2A, 2B, 2D, 4B and 6A also play a role in the intensity of the purple colour.With the aid of a Chinese Spring telocentric chromosome marker it was observed that the Rc3 gene is located on the chromosome arm 7DS, at a distance of 16±4.23 crossover units from the centromere.  相似文献   
218.
The main goal of this work was to introduce resistance genes for rust, caused by Uromyces appendiculatus, and anthracnose, caused by Colletotrichum lindemuthianum, in an adapted common bean cultivar through marker-assisted backcrossing. DNA fingerprinting was used to select plants genetically closer to the recurrent parent which were also resistant to rust and to race 89 of C. lindemuthianum. DNA samples extracted from the resistant parent (cv. Ouro Negro), the recurrent parent (cv. Rudá), and from BC1, BC2 and BC3 resistant plants were amplified by the RAPD technique. The relative genetic distances in relation to the recurrent parent varied between 9 and 59% for BC1, 7 and 33% for BC2, and 0 and 7% for BC3 resistant plants. After only three backcrosses, five lines resistant to rust and anthracnose with, approximately, 0% genetic distance in relation to the recurrent parent were obtained. These lines underwent field yield tests in two consecutive growing seasons and three of them presented a good yield performance, surpassing in that sense their parents and most of the reference cultivars tested.  相似文献   
219.
G. Wricke 《Plant Breeding》2002,121(1):26-28
Previously, kernel weight in rye was considered mostly as a quantitatively inherited trait. F1 plants from parents showing a great difference in kernel weight were selfed and the segregating F2 population was analysed with molecular markers. Two simple sequence repeats markers, one on chromosome 5 and the other on chromosome 7, were found which allowed the genetic analysis of two major genes acting in a complementary way. The analysis of major genes is an advantage in breeding for this important economic trait. In addition it can provide more insight into the genetic structure of this character. This is, in turn, also a prerequisite for future investigations of this trait at the molecular level.  相似文献   
220.
Summary S1 to S5 inbred lines, derived from a maize population bred for its overall resistance to three tropical viruses, were screened for resistance to maize streak virus (MSV) by artificial plant infection using viruliferous leafhoppers. Symptoms were rated and intra-line frequency distributions studied for all pedigree inbred lines. Mortality due to MSV was very low among these inbreds. Symptoms appeared later, developed slower and were less severe than in the susceptible control hybrid. Results of a study of 500 S1 and 93 S2 lines suggested that resistance is under genetic control via a system involving loci with major genes (with dominance for resistance) controlling high to complete resistance, associated with a genetic system involving loci with minor genes controlling partial resistance. Lines expressing complete resistance to MSV were developed from 5 cycles of inbreeding and selection. The relevance of such complete and partial resistance is discussed.Abbreviations MRPS Mean Rating for Plants exhibiting Symptoms  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号