首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   8篇
林业   12篇
农学   2篇
  95篇
综合类   6篇
农作物   1篇
水产渔业   12篇
园艺   1篇
  2023年   3篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   2篇
  2014年   2篇
  2013年   17篇
  2012年   33篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  2000年   4篇
  1997年   1篇
  1996年   2篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
排序方式: 共有129条查询结果,搜索用时 531 毫秒
41.
C. R. Spehar 《Euphytica》1994,76(1-2):127-132
Summary The Brazilian Savannas (Cerrados), a vast area covering one fourth of the country's territory, has acidic soils that are devoid of nutrients and must be amended before cultivation. Mineral disorder on the soya bean crop has been frequent, mainly due to unbalanced liming and fertilization. There is no information on varietal differences and the impact of these practices on the seed quality. Chemical analyses were performed to assess the levels of elements in seed samples of 45 soya bean varieties from an experiment in a partly- and fully-limed acid soil. The levels of phosphorus, potassium, iron, aluminium, manganese, zinc and copper were inversely proportional to the level of liming. Calcium, magnesium, sodium, molybdenum and titanium did not show statistical differences for seed accumulation in the liming levels. There was a high frequency of varieties derived from Al-intolerant parents to increased levels of P, K, Ca and Mg, contrasting with respective lower levels in the leaves. The varietal differences suggest further investigation on the genetics of mineral element accumulation in the soya bean seeds. Aluminium levels varied between 8.7 to 5.5 mg/kg, respectively, for the partly- and the fully-limed soil, indicating that cultivation of soya beans in these acid soils produced little effect on the quality of seeds.  相似文献   
42.
农业废弃物及其制备的生物质炭对酸性土壤的改良作用   总被引:13,自引:0,他引:13  
The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor aflecting their liming potential, and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.  相似文献   
43.
Abstract. The effects of especially frequent nitrogen (N) additions (from 1959 to 1986, totalling 860 kg N ha−1) and liming (in 1958 and 1980, totalling 6000 kg CaCO3 ha−1) on CH4 uptake by a boreal forest soil were studied in a stand of Norway spruce. Except for a forested reference plot, the stand was clear-cut in January 1993 and the following year one-half of each clear-cut plot was prepared by mounding. Fluxes of CH4 were measured with static chambers in the autumn before clear-cutting and during the following four summers. The average CH4 uptake during 1993–96 in the forested reference plot was 82 μg CH4 m−2 h−1(ranging from 10 to 147 units). In the first summer after clear-cutting, the cleared plot showed 42% lower CH4 uptake rate than the forested reference plot, but thereafter the difference became less pronounced. The short-term decrease in CH4 consumption after clear-cutting was associated with increases in soil NH4+ and NO3concentrations. Mounding tended at first to stimulate CH4 uptake but later to inhibit it. Neither liming nor N-fertilization had significant effects on CH4 consumption. Our results suggest that over the long term, in N-limited upland boreal forest soils, N addition does not decrease CH4 uptake by the soil.  相似文献   
44.
ABSTRACT

To investigate fine root dynamics after thinning (50% of standing tree) and liming calcium magnesium carbonate[CaMg(CO3)2] 2 Mg ha? 1, a 2-year study was performed in 40-year-old pitch pine (Pinus rigida Mill.) and 44-year-old Japanese larch (Larix leptolepis Gord.) plantations in central Korea. Mean total fine root mass (kg ha? 1± SE) in the control, thinned, and limed plots were 1234 ± 32, 1346 ± 67, and 1134 ± 40 for the pitch pine plantation and 1655 ± 48, 1953 ± 58, and 1868 ± 70 for the Japanese larch plantation, respectively. Live fine root mass of pitch pine at 0-10 cm soil depth decreased after thinning and liming. In addition, liming significantly increased dead fine root mass of Japanese larch. Fine root production (kg ha? 1 yr? 1± SE) in the control, thinned and limed plots was 1108 ± 148, 2077 ± 262, and 1686 ± 103 for the pitch pine plantation and 1762 ± 103, 1886 ± 277, and 2176 ± 271 for the Japanese larch plantation, respectively. Fine root turnover rates increased after liming for both plantations. Fine root nitrogen (N) and phosphorus (P) concentrations of Japanese larch (1.012% of N and 0.073% of P) were higher than those of pitch pine (0.809% of N and 0.046% of P) in the control. Also N and P inputs into soil through fine root turnover increased after treatments. Results indicated that comparing fine root dynamics among forest types and after forest management practices might influence differences in soil fertility and underground nutrient cycling.  相似文献   
45.
Most soils in the Prairie Provinces of Canada are deficient in plant-available nitrogen (N), and many soils in the Parkland region also contain insufficient amounts of plant-available sulfur (S) for high crop production. A field experiment with perennial grass stand was conducted to determine the effects of long-term annual N (112 kg N ha?1), S (11 kg S ha?1) and potassium (K) (40 kg K ha?1) fertilization, and one-time lime application on forage dry matter yield (DMY) and soil properties [pH, total organic carbon (TOC) and N (TON), and light fraction organic C (LFOC) and N (LFON)] on a Dark Gray Chernozem (Boralfic Boroll) loam at Canwood in north-central Saskatchewan, Canada. The experiment had surface-broadcast annual treatments of no fertilizer (Nil), N, S, NS, and NSK fertilizers from 1980 to 2002, and one-time lime application in 1992 to bring soil pH to about 7. Application of N or S alone had only a little effect on DMY compared to unfertilized Nil treatment, while application of both NS together substantially increased DMY, and forage yield was further increased when K was also applied (NSK). The DMY following one-time liming was greater in limed plots than in unlimed plots for at least 10 years. Decline of soil pH by fertilization mainly happened in the 0–10 cm depth with N only, and in the 0–5 cm layer with NS treatment, whereas these treatments tended to increase soil pH in layers below 10 cm. One-time surface application of granular lime increased soil pH, mainly in the 0–5 cm layer, and the effect was maintained for at least 9 years. Mass of TOC, TON, LFOC, and LFON in different soil layers increased with combined applications of N and S fertilizers (NS), but the effect was much more pronounced in the 0–7.5 cm soil layer, and also varied with organic fraction. Light organic fractions were more responsive to applied NS than total organic fractions. The findings suggest that application of N and S together was effective in sustaining high forage yield and increasing C and N sequestration in a soil deficient in both N and S.  相似文献   
46.
The Brazilian Cerrado region which covers an area of 180 million ha is characterized by soils with favorable topography but very poor soil fertility, and due for that, it was considered until recently, unsuitable for agriculture. Liming for base saturation of 50%, in general, together with PKS and micronutrients correction allowed this region to become one of the most important “break baskets” of the world. In recent years the adoption of the notillage system is showing the relevant role of organic matter on soil fertility improvement. This region is now responsible for over 50% of the country soybean, corn, coffee and beef production.  相似文献   
47.
The bonding of wood by means of glue has been practised for many centuries.

Adhesion between an adhesive and wood is the result of unbalanced secondary valency forces (Van der Waal's forces) present on the interfaces. It is fundamental to good adhesion that the adhesive must (a) wet the surface it is required to adhere to and (b) penetrate the wood capillaries. The phenomenon of “wetting” is indicated by the contact angle the adhesive forms on the wood surface as well as its ability to penetrate the wood capillaries. Maximum penetration of the capillaries is inhibited in practice due to air becoming trapped in “inkpot” type capillaries caused by the sawblade tearing the wood fibres over in the direction of the cut. Several ways to increase capillary penetration are suggested.

The anisotropic chemical reactivity of wood is theorized in so far that a unit area of wood substance (excluding lumen openings) cut on the cross-sectional plane cannot be as effectively glued as a unit area of wood substance on the radial and tangential plane. This is due to the positioning of the chemically reactive groups on the cellulose chains which are predominantly oriented parallel to the fibre axis.

The engineered design of joints is briefly discussed and mathematical expression given as to how incorrect joint design can be detrimental to the ultimate joint strength.

The general character of the better-known synthetic adhesives is briefly discussed. Little detail is given as excellent hand books exist on this specific subject.  相似文献   
48.
A laboratory incubation experiment was conducted to determine the dynamics of soil pH and electrical conductivity (EC) in a soil to which three animal manures [poultry (PM), cattle (CM), and goat (GM) manures] had been applied. The result of this study showed that the manures differed in qualities. Poultry manure had significantly greater EC and dissolved salts compared with the other manures, whereas the pH of cattle and goat manures are significantly greater than that of PM treatment. The liming effect of the manures was only for about 30 days after manure incorporation, and it varied with manure type and incubation period. There was an increase in EC as days of incubation increased. The potential of manure-induced soil salinization is very high in PM and GM. It was concluded that manure quality and use should be synchronized with consideration of their liming potential and reduced salinization effect.  相似文献   
49.
A laboratory incubation study was conducted to study the influence of liming on extractable boron (B) in acidic soil. Six soils, three each from the Inceptisols and Alfisols, were incubated for 30 days with combinations of lime and B. The soils were acutely deficient in plant-available B (0.09–0.21 mg kg?1). Only <50 percent of applied B was recovered from the soils in available form. Such recovery was lower in Alfisols than that in Inceptisols due to adsorption of a greater amount of added B with iron (Fe?) and aluminium (Al?) oxides in the former soil group. Required dose of lime showed an increase in availability of native soil B, particularly in Inceptisols (26 percent), and a net decrease in recovery of added B (32.5 percent) as compared to no lime control (41.6 percent). The results thus suggest that liming to acidic soils increases extractable B.  相似文献   
50.
ABSTRACT

Red acid soil is generally distributed in humid tropical areas under high rainfall. The main constraint is usually the extremely low pH of the soil due to the very intensive leaching of the bases from the soil. At the same time, however, the soluble micro elements, such as iron, are high. This can cause plant toxicity. The liming of acidic soils is normally performed to reduce the iron toxicity as the first step toward providing a balanced nutrition for cultivated plants. The objective of this study is to determine the effects of liming on the soil pH, on the decrease of iron in the soil and on the growth of the pineapple. The research was done in the Greenhouse of the Research and Development Department, PT Great Giant Pineapple, Lampung, Indonesia, from November 2015 to April 2016. The design of the experiment was arranged as a completely randomized design with seven treatments and three replications, consisting of: No dolomite (D0), dolomite 1 t ha?1 (D1), dolomite 2 t ha?1 (D2), dolomite 3 t ha?1 (D3), dolomite 4 t ha?1 (D4), dolomite 5 t ha?1 (D5) with added Fe-EDTA and for the control treatment, no dolomite and no Fe-EDTA (C0). The results showed that an increase in the dolomite dose can increase the pH, potassium (K), calcium (Ca) and magnesium (Mg) in the soil and can decrease the iron (Fe) in the soil significantly. Increasing the pH, K, Ca and Mg and decreasing the Fe in the soil were seen to influence the growth of the pineapple. In particular, the leaf area of the pineapple plant increased considerably. The other parameters also increased, but not significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号