首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
林业   2篇
  1篇
综合类   4篇
园艺   14篇
  2022年   8篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2014年   4篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
21.
Urban forests are recognized as a nature-based solution for stormwater management. This study assessed the underlying processes and extent of runoff reduction due to street trees with a paired-catchment experiment conducted in two sewersheds of Fond du Lac, Wisconsin. Computer models are flexible, fast, and low-cost options to generalize and assess the hydrologic processes determined in field studies. A state-of-the-art, public-domain model, which explicitly simulates urban tree hydrology, i-Tree Hydro, was used to simulate the paired-catchment experiment, and results from field observations and simulation predictions were compared to assess model validity and suitability as per conditions in the broader Great Lakes basin. Model parameters were aligned with observed conditions using automatic and manual calibration. Model performance metrics were used to quantify the weekly performance of calibration and to validate predictions. Those calibration metrics differed substantially between the two periods simulated, but most calibration metrics remained positive, indicating the model was not fitting only the period used for calibration. Predicted avoided runoff for a five-month leaf-on period was 64 L/m2 of canopy, 4 % lower than the field-estimated avoided runoff of 66 L/m2 of canopy. Interception was the most directly comparable process between the model and field observations. Based on 5 storms sampled, field estimation of precipitation intercepted and retained on trees averaged 63 % and ranged from 22 % to 81 %, while model estimation averaged 61 % and ranged from 36 % to 99 %. This model was able to fit predictions to observed catchment discharge but required extensive manual calibration to do so. The i-Tree Hydro model predicted avoided runoff comparable with the field study and earlier assessments. Additional field studies in similar settings are needed to confirm findings and improve transferability to other tree species and environmental settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号