首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  国内免费   2篇
林业   7篇
农学   1篇
基础科学   5篇
  16篇
综合类   13篇
畜牧兽医   4篇
园艺   9篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
51.
在对草地生态系统可持续发展涵义理解的基础上 ,分析了中国西部草地生态系统的自然环境特点、社会经济发展的状况和草地资源利用和存在问题。借鉴国内对草地资源分析评价的研究成果 ,参照国际千年生态系统综合评估的思路、观点和方法 ,综合草地生态系统的自然环境、社会经济环境、草场经营、经济效益和草地景观五个方面 ,紧紧围绕草地生态系统生产的产品、服务与人类福利的关系 ,应用层次分析法 ,建立草地生态系统可持续发展的评价模型和评价指标体系 ,并首次对评价指标体系在中国西部—区域—地区三种尺度上进行尺度扩展作了探索  相似文献   
52.
53.
Various jurisdictions in Canada are currently undertaking, or have recently completed, planning exercises as part of implementation and expansion of representative reserve networks (networks of provincial parks, national parks, ecological reserves, etc.). These exercises have resulted in recommendations to governments about which areas of land should be set aside as protected areas, and different levels of government have been involved in the process of land acquisition. In some cases, planning exercises have included implementation of new protected areas to complement existing reserve networks. Many of these exercises have applied principles such as complementarity, using heuristic algorithms that are well-described in the literature. These planning exercises may be conducted within politically or ecologically bounded target regions of varying extents. Here, I develop candidate locations for representative reserve areas for disturbance-sensitive mammals across Canada. I use ecologically bounded regions (within the national boundaries of Canada) at three different levels of spatial hierarchy: mammal provinces, ecozones, and ecoregions. I show that the extent of the target region has an effect on the minimum number of protected areas required to achieve representation; a larger region requires fewer protected areas than the sum of the protected areas required to represent its component regions at a lower level of spatial hierarchy. The results illustrate that selection of sites for inclusion in a reserve network is highly scale-dependent, and different spatial extents in the target regions may introduce inefficiencies or redundancies in selecting representative protected areas.  相似文献   
54.
Scaling up ecosystem processes from plots to landscapes is essential for understanding landscape structure and functioning as well as for assessing ecological impacts of land use and climate change. This study illustrates an upscaling approach to studying the spatiotemporal pattern of ecosystem processes in the Changbai Mountain Nature Reserve in northeastern China by integrating simulation modeling, GIS, remote sensing data, and field-based observations. The ecosystem model incorporated processes of energy transfer, plant physiology, carbon dynamics, and water cycling. Using a direct extrapolation scheme, the patch-level ecosystem model was scaled up to quantify the landscape-level pattern of primary productivity and the carbon source-sink relationship. The simulated net primary productivity (NPP) for the entire landscape, consisting of several ecosystem types, was 0.680 kg C m−2 yr−1. The most widely distributed ecosystem type in this region was the mixed broad-leaved and Korean pine (Pinus koraiensis) forest, which had the highest NPP (1.084 kg C m−2 yr−1). The total annual NPP for all ecosystem types combined was estimated to be 1.332 Mt C yr−1. These results suggest that the Changbai Mountain landscape as a whole was a carbon sink, with a net carbon sequestration rate of about 0.884 Mt C yr−1 for the study period. The simulated NPP agreed reasonably well with available field measurements at a number of locations within the study landscape. Our study provides new insight into the relationship between landscape pattern and ecosystem processes, and useful information for improving management practices in the Changbai Mountain Nature Reserve, which is one of the most important forested landscapes in China. Several research needs are discussed to further refine the modeling approach and reduce prediction uncertainties.  相似文献   
55.
Crop scientists are often interested in canopy rather than leaf water estimates. Comparing canopy fluxes for multiple treatments using micrometeorological approaches presents limitations because of the large fetch required. The goal of this study was to compare leaf-scale to field-scale data by summing soil water evaporation (E) and leaf transpiration (T) versus ET using tower eddy covariance (EC) and scaling leaf transpiration to the canopy level using a two-step scaling approach in soybean [Glycine max (L.) Merr.]. Soybean transpiration represented 89-96% of E + T when combining the soil water evaporation with leaf transpiration on the five measurement days during reproductive growth. Comparing E + T versus ET from the EC system, the E + T method overestimated ET from 0.68 to 1.58 mm. In terms of percent difference, the best agreement between the two methods was 15% on DOY 235 and the worst agreement occurred on DOY 234 (41%). A two-step scaling method predicted average ET within 0.01 mm of the EC ET between 10:00 and 14:15 on an hourly time-step on DOY 227 under uniform sky conditions and average ET within 0.03 mm of the EC ET on DOY 235 under intermittent sky conditions between 10:00 and 15:15. Pooling the scaled-leaf data and comparing them with the measured EC ET data exhibited a strong linear relationship (r = 0.835) after accounting for bias (6%). Findings from this study indicate satisfactory results comparing absolute differences are likely not obtainable by summing leaf transpiration with soil water evaporation to calculate canopy water fluxes. However, scaling leaf transpiration provided a robust measure of canopy transpiration during reproductive growth in soybean under these conditions and merits additional study under different climatic and crop conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号