全文获取类型
收费全文 | 6778篇 |
免费 | 2264篇 |
国内免费 | 199篇 |
专业分类
林业 | 313篇 |
农学 | 690篇 |
基础科学 | 105篇 |
3441篇 | |
综合类 | 2496篇 |
农作物 | 562篇 |
水产渔业 | 163篇 |
畜牧兽医 | 979篇 |
园艺 | 185篇 |
植物保护 | 307篇 |
出版年
2025年 | 115篇 |
2024年 | 128篇 |
2023年 | 180篇 |
2022年 | 170篇 |
2021年 | 237篇 |
2020年 | 268篇 |
2019年 | 272篇 |
2018年 | 218篇 |
2017年 | 352篇 |
2016年 | 447篇 |
2015年 | 338篇 |
2014年 | 380篇 |
2013年 | 688篇 |
2012年 | 617篇 |
2011年 | 521篇 |
2010年 | 447篇 |
2009年 | 425篇 |
2008年 | 370篇 |
2007年 | 445篇 |
2006年 | 402篇 |
2005年 | 297篇 |
2004年 | 245篇 |
2003年 | 219篇 |
2002年 | 157篇 |
2001年 | 131篇 |
2000年 | 158篇 |
1999年 | 95篇 |
1998年 | 106篇 |
1997年 | 108篇 |
1996年 | 119篇 |
1995年 | 85篇 |
1994年 | 71篇 |
1993年 | 79篇 |
1992年 | 76篇 |
1991年 | 52篇 |
1990年 | 61篇 |
1989年 | 55篇 |
1988年 | 30篇 |
1987年 | 28篇 |
1986年 | 14篇 |
1985年 | 8篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1981年 | 2篇 |
1978年 | 4篇 |
1977年 | 1篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1962年 | 1篇 |
1956年 | 1篇 |
排序方式: 共有9241条查询结果,搜索用时 15 毫秒
81.
To understand nitrous oxide (N2O) emissions from terrestrial ecosystems it is necessary to understand the processes leading to N2O production. Here, for the first time, results are presented which identify in situ the processes of N2O production in a temperate grassland soil. A small portion of the nitrogen (N) applied in the summer to the grassland soil was rapidly transported below the main rooting zone (>20 cm) and resulted in large N2O productions at depths of 20-50 cm. Preferential pathways must have been responsible for this movement because the soil conditions were not conducive to leaching by piston flow. The N2O was entirely produced by nitrate (NO3−) reduction which was surprising because the bulk soil was aerobic. Therefore, reduction processes can operate during times of the year when it is least expected and cause large N2O concentrations deep in the soil profile. 相似文献
82.
B.A Jaffee 《Soil biology & biochemistry》2004,36(7):1171-1178
Researchers have proposed that Arthrobotrys oligospora and related fungi trap soil nematodes to obtain nitrogen and thereby compete saprophytically for carbon and energy in nitrogen-poor environments, including litter and wood. The current study tested two hypotheses concerning this model. The first was that wood decomposition would be enhanced if both large numbers of nematodes (a potential nitrogen supply) and A. oligospora (a cellulolytic organism that can use that N supply) were present. The second was that A. oligospora trapping activity would increase if large numbers of nematodes were added to soil containing abundant carbon (a wood dowel or chip). Although the first hypothesis was supported by an in vitro experiment on agar (A. oligospora degraded much more wood when nematodes were present), neither hypothesis was supported by an experiment in vials containing field soil. In soil, wood decomposition was unaffected by the addition of A. oligospora or large numbers of nematodes. Whereas A. oligospora trapped virtually all nematodes added to agar cultures, it trapped few or no nematodes added to soil. Given that the fungal isolate was obtained from the same soil and that the fungus increased to large numbers (>1×103 propagules g−1 soil), the failure of A. oligospora to trap nematodes in soil is difficult to explain. Soil nitrate levels, however, were high (71 mg kg−1), and it is possible that with lower nitrate levels, trapping in soil might be stimulated by wood and nematodes. 相似文献
83.
W. Y. Wang Q. J. Wang Ch. Y. Wang H. L. Shi Y. Li G. Wang 《Land Degradation u0026amp; Development》2005,16(5):405-415
Large‐scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non‐disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105·97 g m−2 and 3·356 g m−2, respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0–20 cm depths of the control had an average 1606 g m−2 and 30·36 g m−2, respectively. Root C and N content in the rehabilitation treatments were in the range of 26–36 per cent and 35–53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0–20 cm was 11 307 g m−2 and 846 g m−2, respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20 cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
84.
A Roy K.P Singh 《Soil biology & biochemistry》2003,35(3):365-372
This paper reports the role of microbial biomass in the establishment of N pools in the substratum during primary succession (till 40-year age) in Blastfurnace Slag Dumps, an anthropogenically created land form in the tropics. Initially in the depressions in the slag dumps fine soil particles (silt+clay) accumulate, retaining moisture therein, and providing microsites for the accumulation of microbial biomass. In all sites microbial biomass showed distinct seasonality, with summer-peak and rainy season-low standing crops. During the summer season microbial biomass C ranged from 18.6 μg g−1 in the 1-year old site to ca. 235 μg g−1 in the 40-year old site; correspondingly, microbial biomass N ranged from 1.22 to 40 μg g−1. On sites 2.5-years of age and younger, the microbial biomass N content accounted for more than 50% of the organic N in the soil, whereas the proportion of microbial biomass N was ca. 7% of organic N in 40-year old site. The strong correlation between microbial biomass and total N in soil indicated a significant role of microbes in the build-up of nitrogen during the initial stages of succession in the slag dumps. Though the organic N pool in the soil was low (594 mg kg−1) even after 40 years of succession, the available N (NH4-N and NO3-N) contents in the soil were generally high through the entire age series (ca. 16-32 μg g−1) during the rainy season (which supports active growth of the herbaceous community). The high mineral-N status on the slag dump was related with high N-mineralization rates, particularly in the young sites (20.6 and 13.9 μg g−1 month−1 at 1 and 2.5-year age). We suggest that along with the abiotic factors having strong effect on ecosystem functioning, the microbial biomass, an important biotic factor, shows considerable influence on soil nutrient build-up during early stages of primary succession on the slag dumps. The microbial biomass dynamics initiates biotic control in developing slag dumps ecosystem through its effect on nitrogen pools and availability. 相似文献
85.
Summary Intact cores of agricultural soil planted with Sorghum bicolor were treated with selective biocides or combinations of biocides to manipulate soil organisms. Half the replicates of each biocide treatment were also given N fertilizer. The plants were maintained in a greenhouse, where growth and nutrient content and soil-organism populations were monitored over 16 weeks.The plants responded strongly to fertilization, but showed weak and variable responses to the biocides, even though biocide treatments aimed at animal taxa effectively reduced their target groups. There were no strong interactions between faunal manipulations and fertilization, implying that there was little compensatory function of fauna in the absence of fertilizer. Conditions under which soil fauna are important in making mineral nutrients available to plants in the field need further investigation. 相似文献
86.
Forty-seven different animal wastes were characterized using chemical and organic matter fractionation methods (water extraction and Van Soest method) and 224-day incubation studies to assess their decomposition in soil. Simple correlation and multiple factor analysis were performed to establish relationships between the composition of these wastes and C and N mineralization. Carbon and N contents ranged from 101 to 469 mg C kg−1 dry matter (d.m.) and from 4 to 39 mg N kg−1 d.m. Soluble C and N represented less than 9% of organic C and 1.5% of total N at 20°C, respectively. The C fractions soluble at 100°C or in neutral detergent were larger and represented 14 and 32% of the organic C, respectively. The hemicellulose-like (HEM) and cellulose-like (CEL) fractions contained about 16.5 and 6% of the organic N, respectively. The C distribution in the lignin-like (LIG) and CEL fractions was comparable, but the former contained more N. Carbon mineralization varied from 5 to 62% of the organic C added during the 224-day incubation; 70% of the wastes induced net N mineralization at the end of incubation (from 3 to 51% of organic N). Other wastes induced net soil inorganic N immobilization, from −1 to −31% of the organic N added. Most highly significant correlations were established between the C mineralization and the C present in the water-soluble fraction at 20°C, and the HEM and LIG fractions. Relationships between N mineralization and biochemical characteristics were weak, except with the soluble Van Soest fraction, and highly significant correlations were observed between N mineralization rates calculated at 224 days of incubation and the organic N content or C/N ratio of wastes. Finally, an objective hierarchical classification based on composition criteria and C and N mineralization led to the definition of six different classes of wastes. It permitted differentiation between four composted wastes and intrinsically different wastes (i.e., cattle manures, pig manures, and poultry manures) which could not be objectively regrouped. It also placed some very different types of waste (solid phase from pig slurry separation, pig manures, and composted pig mixtures) in the same class. 相似文献
87.
Summary Amino acids were extracted from fertility plots of a loamy sand soil with 0.05 M HF-HCl and with a 10% ethanol solution (free amino acids) and analysed by reverse-phase high performance liquid chromatography (HPLC). The total quantities of amino-N compounds analysed were 4.4 g/g soil for the acid treatment and 22.6 g/g soil for the 10% ethanol extract. Glycine and glutamic acid were the most abundant of 15 amino-N compounds in the HF-HCl extracts, whereas glutamic acid and ornithine + NH+4 were found in the highest concentration in the 10% ethanol extracts. The HF-HCI pretreatment is used to increase the efficiency of the extraction of soil organic matter. Although this pretreatment removed some amino acids, the acids extract less than 1% of the total amino-N content of the crude soil extracts. The pretreatment, therefore, was not overly destructive. Comparisons between the amino acids extracted from the fertility plots were not conclusive, except for glycine, which was greater in concentration in the higher fertilizer N plots of the same crop rotation. 相似文献
88.
The contribution of nitrification to the emission of nitrous oxide (N2O) from soils may be large, but its regulation is not well understood. The soil pH appears to play a central role for controlling N2O emissions from soil, partly by affecting the N2O product ratios of both denitrification (N2O/(N2+N2O)) and nitrification (N2O/(NO2−+NO3−). Mechanisms responsible for apparently high N2O product ratios of nitrification in acid soils are uncertain. We have investigated the pH regulation of the N2O product ratio of nitrification in a series of experiments with slurries of soils from long-term liming experiments, spanning a pH range from 4.1 to 7.8. 15N labelled nitrate (NO3−) was added to assess nitrification rates by pool dilution and to distinguish between N2O from NO3− reduction and NH3 oxidation. Sterilized soil slurries were used to determine the rates of chemodenitrification (i.e. the production of nitric oxide (NO) and N2O from the chemical decomposition of nitrite (NO2−)) as a function of NO2− concentrations. Additions of NO2− to aerobic soil slurries (with 15N labelled NO3− added) were used to assess its potential for inducing denitrification at aerobic conditions. For soils with pH?5, we found that the N2O product ratios for nitrification were low (0.2-0.9‰) and comparable to values found in pure cultures of ammonia-oxidizing bacteria. In mineral soils we found only a minor increase in the N2O product ratio with increasing soil pH, but the effect was so weak that it justifies a constant N2O product ratio of nitrification for N2O emission models. For the soils with pH 4.1 and 4.2, the apparent N2O product ratio of nitrification was 2 orders of magnitude higher than above pH 5 (76‰ and 14‰). This could partly be accounted for by the rates of chemodenitrification of NO2−. We further found convincing evidence for NO2−-induction of aerobic denitrification in acid soils. The study underlines the role of NO2−, both for regulating denitrification and for the apparent nitrifier-derived N2O emission. 相似文献
89.
Soil nitrogen (N) availability is one of the limiting factors for plant growth on sandy lands. Little is known about impacts of afforestation on soil N availability and its components in southeastern Keerqin sandy lands, China. In this study, we measured N transformation under sandy Mongolian pine (Pinus sylvestris var. mongolica Litv.) plantations of different ages (grassland, young, middle‐aged, close‐to‐mature) and management practices (non‐grazing and free‐grazing) during the growing seasons using the ion exchange resin bag method. Results showed that, for all plots and growing season, soil NH‐N, NO‐N, mineral N, and relative nitrification index, varied from 0·18 to 1·54, 0·96 to 22·05, 1·23 to 23·58 µg d−1 g−1 dry resin, and 0·76 to 0·97, respectively, and NO‐N dominated the available N amount due to intense nitrification in these ecosystems. In general, the four indices significantly increased in the oldest plantation, with corresponding values in non‐grazing sites lower than those in free‐grazing sites (p < 0·05). Our studies indicated that it is a slow, extended process to achieve improvement in soil quality after afforestation of Mongolian pine in the study area. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
90.
We tested the inter‐specific variability in the ability of three dominant grasses of temperate grasslands to take up organic nitrogen (N) in the form of amino acids in soils of differing fertility. Amino acid uptake was determined by injecting dual labeled glycine‐2‐13C‐15N into the soil, and then measuring the enrichment of both 13C and 15N in plant tissue after 50 hours. We found enrichment of both 13C and 15N in root and shoot material of all species in both soils, providing first evidence for direct uptake of glycine. We show that there was considerable inter‐specific variability in amino acid uptake in the low fertility soil. Here, direct uptake of amino acid was greater in the grass Agrostis capillaris, which typically dominates low fertility grassland, than Lolium perenne, which inhabits more fertile sites. Direct uptake of amino acid for Holcus lanatus. was intermediate between the above two species. Unlike in the low fertility soil, there was no difference in uptake of either 13C or 15N by grasses in the high fertility soil, where uptake of mineral N is thought to be the major mechanism of N uptake of these grasses. Overall, our findings may contribute to our understanding of differences in competitive interactions between grasses in soils of different fertility status. 相似文献