首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1616篇
  免费   53篇
  国内免费   91篇
林业   18篇
农学   307篇
基础科学   89篇
  212篇
综合类   727篇
农作物   56篇
畜牧兽医   10篇
园艺   241篇
植物保护   100篇
  2024年   11篇
  2023年   16篇
  2022年   41篇
  2021年   39篇
  2020年   42篇
  2019年   51篇
  2018年   34篇
  2017年   59篇
  2016年   66篇
  2015年   75篇
  2014年   80篇
  2013年   122篇
  2012年   171篇
  2011年   137篇
  2010年   94篇
  2009年   91篇
  2008年   78篇
  2007年   72篇
  2006年   63篇
  2005年   47篇
  2004年   48篇
  2003年   43篇
  2002年   26篇
  2001年   25篇
  2000年   28篇
  1999年   25篇
  1998年   19篇
  1997年   24篇
  1996年   20篇
  1995年   11篇
  1994年   12篇
  1993年   8篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   11篇
  1988年   4篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1955年   2篇
排序方式: 共有1760条查询结果,搜索用时 265 毫秒
91.
Begomoviruses were detected in Nicaraguan fields of tomato ( Lycopersicon esculentum ) and adjacently growing plants of pepper ( Capsicum annuum ), chilli pepper ( C . baccatum ), cushaw ( Cucurbita argyrosperma ) and Mexican fireplant ( Euphorbia heterophylla ) using polymerase chain reaction (PCR) and universal begomovirus primers. All tomato and Mexican fireplant plants showing symptoms were infected with begomoviruses, while only 30–46% of the pepper, chilli pepper and cushaw plants showing symptoms tested virus-positive. No begomoviruses were found in potato. The virus species were provisionally identified by sequencing 533 bp of the viral coat protein gene ( AV1 ). Tomato severe leaf curl virus (ToSLCV), Tomato leaf curl Sinaloa virus (ToLCSinV) and Pepper golden mosaic virus (PepGMV) were found to infect both tomato and pepper. A new provisional species designated Tomato leaf curl Las Playitas virus (ToLCLPV) was detected in a tomato plant. Squash yellow mottle virus (SYMoV) and PepGMV were found in cucurbits, the latter for the first time in this host. Euphorbia mosaic virus (EuMV) was detected in Mexican fireplant. Sequencing of a larger number of PCR-amplified clones from selected plants revealed intraspecific viral sequence variability, and also multiple begomovirus infections which could represent up to three species in a single tomato or cushaw plant. Phylogenetic grouping of virus sequences did not correlate with the host of origin.  相似文献   
92.
The effects of acid extracts of tomato ( Lycopersicon esculentum Mill.) and carrot ( Daucus carota L.) juice wastes from the food industry on the growth of five species of crops and four weeds were examined. The acid extract of the tomato juice waste promoted the shoot and root growth of tomato, Chinese cabbage, corn, and radish, but not the growth of oat seedlings. The extract did not promote the shoot growth of weeds tested, and it inhibited the root growth of the weeds that included barnyardgrass ( Echinochloa oryzicola Ohwi), southern crabgrass ( Digitaria ciliaris Koel.) and Japanese barnyard millet ( Echinochloa utilis Ohwi). The carrot juice waste was also examined as another waste from the food industry. The effect of the acid extract of carrot juice waste showed significant promoting effects on the root growth of Chinese cabbage; however, the effects on other plants were lower than that of tomato juice waste. It also did not inhibit the growth of weeds. These results suggested that the acid extract from tomato juice waste is useful as plant-growth substances because they have a promoting effect on the shoot and root growth of crops, and an inhibitory effect on the root growth of some weeds.  相似文献   
93.
To establish control thresholds for chemical control of powdery mildew (Erysiphe cruciferarum) on Brussels sprouts, mildew intensity on leaves and buds was observed on the cultivars Lunet, Tardis and Asgard during three years in unsprayed plots. Mildew infection on the leaves was observed from late August onwards, increasing to moderate or high levels. In one year light infestation of the buds was observed, but no reduction in quality occurred. These preliminary results indicate, that from late August onwards the following levels of leaf injury by powdery mildew can be tolerated: T=5+0.42*(Julian date — 235), in which T is the tolerable leaf injury in percentage leaf area covered. When sampling the crop to assess powdery mildew infection, care must be taken that leaves are sampled from all stem positions, as top leaves tend to be much less infected.  相似文献   
94.
Experiments were designed to analyze the relationships between the root-knot nematodeMeloidogyne incognita and resistant tomato and pepper genotypes. From a natural avirulent isolate, near-isogenic nematode lineages were selected with virulence either against the tomatoMi resistance gene or the pepperMe3 resistance gene. Despite the drastic selection pressure used, nematodes appeared unable to overcome the pepperMe1 gene, therefore suggesting some differences in the resistance conferred byMe1 andMe3 in this species. Nematodes virulent onMi-resistant tomatoes were not able to reproduce onMe1-resistant nor onMe3-resistant peppers, and nematodes virulent onMe3-resistant peppers were not able to reproduce onMi-resistant tomatoes nor onMe1-resistant peppers. These results clearly demonstrate the specificity ofM. incognita virulence against resistance genes from both tomato and pepper, and indirectly suggest that gene-for-gene relationships could occur between these two solanaceous crops and the nematode.  相似文献   
95.
In 1991 serious losses caused byVerticillium wilt were found on two holdings in the Westland glasshouse district in the Netherlands in which theVerticillium resistant tomato cultivars Calypso and Criterium were grown in soilless systems. Isolates from diseased plants were identified asVerticillium albo-atrum.In inoculation experimentsVerticillium resistant tomato cultivars were seriously affected by the new isolates but not by a control isolate. Moneydor, a susceptible cultivar without the Ve gene, was the most seriously diseased by all isolates. The isolates from theVerticillium resistant tomato cultivars were less virulent on the susceptible cultivar than the control isolate.  相似文献   
96.
We isolated 629 fungi from 1296 berry seeds of solanaceous plants, including tomato (Lycopersicon esculentum), eggplant (Solanum melongena), bell pepper (Capsicum annuum), and red pepper (Capsicum annuum var. annuum) preserved for long and short terms. The isolates were classified into 22 genera excluding unidentified fungi, and the fungal floras were divided into two types: the tomato–eggplant and pepper groups. The results of cluster analysis with unweighted pair-group method with arithmetic average also supported these groups. Most tomato seeds infested with Geotrichum candidum germinated and grew the same as uninfested seeds. Cladosporium sphaerospermum and Arthrinium sp. isolated from eggplant seeds strongly suppressed germination, and Penicillium variabile suppressed seminal root elongation on eggplant. Alternaria alternata, Botrytis cinerea, and Myrothecium verrucaria detected from red pepper or bell pepper seeds were pathogenic to the fruits and the seedlings after artificial inoculation.  相似文献   
97.
Exposure to high temperatures (heat stress) causes reduced yield in tomatoes (Lycopersicon esculentum), mainly by affecting male gametophyte development. Two experiments were conducted where several tomato cultivars were grown under heat stress, in growth chambers (day/night temperatures of 31/25 °C) or in greenhouses (day/night temperatures of 32/26 °C), or under control (day/night temperatures of 28/22 °C) conditions. In heat-sensitive cultivars, heat stress caused a reduction in the number of pollen grains, impaired their viability and germinability, caused reduced fruit set and markedly reduced the numbers of seeds per fruit. In the heat-tolerant cultivars, however, the number and quality of pollen grains, the number of fruits and the number of seeds per fruit were less affected by high temperatures. In all the heat-sensitive cultivars, the heat-stress conditions caused a marked reduction in starch concentration in the developing pollen grains at 3 days before anthesis, and a parallel decrease in the total soluble sugar concentration in the mature pollen, whereas in the four heat-tolerant cultivars tested, starch accumulation at 3 days before anthesis and soluble sugar concentration at anthesis were not affected by heat stress. These results indicate that the carbohydrate content of developing and mature tomato pollen grains may be an important factor in determining pollen quality, and suggest that heat-tolerant cultivars have a mechanism for maintaining the appropriate carbohydrate content under heat stress.  相似文献   
98.
Tomato spotted wilt (TSW) disease is a serious constraint to tomato production in various regions of the world. The effect of TSW on tomato yield is largely influenced by time of infection. Early infection usually results in severe stunting of the seedling and even death of the plant. Plastic film mulches affect both the incidence of TSW, and plant growth and yield of tomato. The objective of the present study was to determine the effect of root zone temperature (RZT) as affected by plastic film mulch on the manifestation of symptoms of TSW, and growth and yield of tomato plants either artificially inoculated with tomato spotted wilt virus (TSWV) or under natural TSW infection. In artificially inoculated plants as well as in plants under natural TSW infection, vegetative top fresh weight (FW) and fruit FW both increased with the length of time after transplanting that the plants remained free from TSW symptoms. The root zone temperature was highest under black mulch (seasonal mean = 27.5 °C), followed by gray (27.0 °C), silver (25.8 °C), and white (24.8 °C) mulches. The plants grown on black mulch showed the earliest appearance of TSW symptoms, and had significantly reduced vegetative growth and fruit yields compared to plants on the other mulches. In conclusion, utilization of plastic mulches that created conditions of high RZT stress resulted in reduced plant growth and yield and predisposed the plants to earlier expression of TSW symptoms compared to plants grown at RZTs more favorable to tomato plant growth (optimal RZT = 26.1 °C [Díaz-Pérez, J.C., Batal, K.D., Granberry, D., Bertrand, D., Giddings, D., Pappu, H., 2003. Vegetative top growth and yield of tomato grown on plastic film mulches as affected by the appearance of symptoms of Tomato spotted wilt virus. HortScience 38, 395–399]). Since these plant responses to TSW under heat stress occurred in artificially inoculated plants as well as in plants under natural TSW infection, high RZTs probably affected the plants directly, independently of any possible effects on the thrips vectors.  相似文献   
99.
Real-time PCR was used to detect and quantify Verticillium dahliae and to assess the susceptibility of four Capsicum annuum cultivars (Luesia, Padrón, SCM331 and PI201234) and the Capsicum chinense cv. C118 to this pathogen. The symptoms which developed after infection included stunting and yellowing, and were more acute in the cv. SCM331, which also suffered defoliation in later stages of the disease and in C118, which suffered severe stunting. Quantification of the pathogen DNA in roots 23 and 34 days post-inoculation (dpi) revealed that there were significantly higher amounts of Verticillium dahliae DNA in C118 than in the other cultivars, followed by SCM331, Padrón and PI201234. The lowest amounts of fungal DNA in roots were found in Luesia. In hypocotyls, the highest amounts of fungal DNA were found in SCM331, while Luesia, Padrón and PI201234 had much lower amounts, and C118 had intermediate levels. When a compatible versus an incompatible system was studied, using the near-isogenic tomato lines LA3030 (susceptible) and LA3038 (resistant to V. dahliae), we were able to detect fungal DNA in both lines. As expected, the fungus/plant DNA ratio was lower in LA3038 than in LA3030 and it decreased with time in LA3038. The amount of Verticillium dahliae DNA in the roots of LA3030 remained constant between days 23 and 34 post-inoculation, but increased 10-fold in collars. Finally, when real-time PCR was applied as a diagnostic method to samples from pepper plants, soil and water collected from farms in northwest Spain, we were able to detect V. dahliae DNA in these samples even when symptoms of the disease were not evident.  相似文献   
100.
The most serious symptom of Botrytis cinerea in tomatoes grown in greenhouses is stem rotting. Lesions on the stem may result from direct infection or from progression of the rot along infected leaves, until infection approaches the stem. In a set of experiments conducted in commercial greenhouses, an experimental greenhouse and growth chambers, the significance of the two types of stem infections was studied. In non-heated greenhouses most of the stem lesions originated from progression of the pathogen along infected petioles. The rate at which B. cinerea had progressed on infected petioles was 0.3–0.5 cm/day, an average of ca. 6 weeks was needed for a leaf infection to approach the stem. Application of Trichoderma harzianum T39 extended this time by 1–2 weeks and application of chemical fungicides by 3 weeks. Influence of the environment on the progression of B. cinerea along infected petioles was then determined. Within range of 5–30 °C, the higher the temperature, the more rapid was the rate of disease progression. The fungus progressed more rapidly on tomato petioles incubated at high vapour pressure deficit (VPD) rather than at low VPD. The source-sink relationship of the plant governed the rate of B. cinerea progression along the petioles as well: it was more rapid when the source was restricted (by shading) and slower when the sink was restricted (by removal of flowers and small fruits). The possibility that sanitation of infected leaflets would reduce the incidence of stem rotting was examined in two experiments. In plots not treated with a fungicide, the sanitation treatment substantially decreased the incidence of stem lesions and this treatment was as effective as weekly application of chemical fungicides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号