1. The aim of this study was to describe the role of Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) receptor signalling in chicken.
2. Tissue-specific expression analysis of NOD1, receptor-interacting serine-threonine kinase 2 (RIPK2), nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase 11 (MAPK11 or p38) by quantitative real-time PCR (qRT-PCR) revealed their wide distribution in various organs and tissues.
3. Salmonella pullorum infection activated NOD1 receptor signalling in vivo and in vitro, resulting in significant induction of downstream signalling molecules RIPK2, NF-κB/p65, MAPK11/p38 and the effector molecules IL-1b and IL-8.
4. Activation of NOD1 by its agonist bacterial γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) in HD11 cells induced the adapter molecular RIPK2 and activated the NF-κB/p65 and MAPK11/p38 pathways, resulting in an increase in IL-8 but not IL-1β. Additionally, inhibition of NOD1 using NOD1-shRNA resulted in downregulation of RIPK2, MAPK11 and IL-8, while NF-κB/p65 and IL-1β were unaltered.
5. These results highlight the important role of NOD1 receptors in eliciting the innate immune response following pathogenic invasion in chicken. 相似文献
Chronic low-grade inflammation in obesity is characterized by an increased production of pro-inflammatory and chemotactic cytokines that are contributing to insulin resistance and related co-morbidities. Cytokines act in networks and exhibit pleiotropic effects so we investigated the circulating levels of a wide array of cytokines (pro and anti-inflammatory, chemotactic and growth factors) in a canine model of weight loss. The dogs served as their own control in order to study the impact of weight loss independent of potential confounding factors, such as history of excess weight or gender. While low-grade inflammation had been previously investigated in obese dogs by measuring changes in adipokines, acute phase proteins and key pro-inflammatory cytokines, to the best of our knowledge this is the first study to evaluate how weight loss impacts a wide array of circulating cytokines.Eighteen overweight Beagle dogs were recruited (six spayed females and 12 neutered males), and none of them were grossly obese according to the body condition score (BCS). All the dogs reached an ideal weight by the end of the program. Parameters were assessed before (baseline), at mid-point (month 3) and at end-point (month 6). Plasma GM-CSF, IL-2, Il-4, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, IFNγ, IP-10, TNFα, monocyte chemotactic protein 1 (MCP-1), keratinocyte chemokine (KC) were measured with canine multiplex immunoassays. Fat mass was assessed by dual energy X-ray absorption (DEXA).Several cytokines decreased throughout the weight loss program (p < 0.01) and were correlated with the percentage of fat measured by DEXA (p < 0.05): chemotactic (MCP-1), growth factors (GM-CSF, IL-7 and IL-2), and pro-inflammatory (KC and IL-18). We could not show trends for several cytokines, possibly because their level may be lower than the assay sensitivity: anti-inflammatory (IL-4 and IL-10), and pro-inflammatory (IL-6 and TNFα).In conclusion, while our findings for several pro-inflammatory and chemotactic cytokines are in accordance with human and rodent studies, we may have identified additional cytokines, such as growth factors, related to obesity-induced low-grade inflammation. Considering the weight loss was enabled by an adjusted diet, the role of this association of cytokines in insulin resistance and related co-morbidities needs to be clarified. Our results could help better understand the cytokine biology in dogs, and as such are relevant for further elucidating the relationship between immune function and metabolism/nutrition. 相似文献
Wnt10b is a member of Wnt family that plays a variety of roles in biological functions, including those in the development of hair follicles. To investigate the effect of Wnt10b on hair growth in the Angora rabbit and to determine the underlying molecular mechanism, we cultured dermal papilla (DP) cells with exogenous Wnt10b in vitro. We observed the expressions of downstream critical gene β‐catenin and lymphoid enhancer‐binding factor 1 (LEF1) in Wnt/β‐catenin pathway. The levels of β‐catenin mRNA and protein were higher in the Wnt10b group of DP cells than in the Control group, and the mRNA level of LEF1 in the Wnt10b group was higher than in the Control group. Moreover, translocation of β‐catenin from cytoplasm to nucleus was activated in the Wnt10b group. Furthermore, the mRNA levels of the hair follicle‐regulatory genes, insulin‐like growth factor‐1 (IGF‐1) and alkaline phosphatase (ALP), and the protein activity of ALP was also upregulated in the Wnt10b group compared to their corresponding levels in the Control group. These data suggest that Wnt10b could activate the canonical Wnt/β‐catenin signalling pathway to induce DP cells in the Angora rabbit. In addition, the proliferation of DP cells was significantly promoted when cultured with Wnt10b for 48 and 72 hr, suggesting that Wnt10b plays a pivotal role in the proliferation and maintenance of DP cells in vitro. In conclusion, this study demonstrates that Wnt10b may promote hair follicle growth in Angora rabbit through the canonical Wnt/β‐catenin signalling pathway that promotes the proliferation of DP cells. 相似文献