首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   5篇
林业   21篇
农学   56篇
  19篇
综合类   19篇
农作物   6篇
畜牧兽医   5篇
园艺   5篇
植物保护   2篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   8篇
  2011年   6篇
  2010年   10篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1981年   2篇
  1978年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
121.
Detection of DNA polymorphism in cultivated pigeonpea (Cajanus cajan) and two of its wild relatives Cajanus volubilis and Rhynchosia bracteata is reported here for the first time using amplified fragment length polymorphism (AFLP) fingerprinting. For this purpose, two EcoRI (three selective nucleotides) and 14 MseI (three selective nucleotides) primers were used. The two wild species shared only 7.15% bands with the pigeonpea cultivars, whereas 86.71% common bands were seen among cultivars. Similarly, 62.08% bands were polymorphic between C. volubilis and pigeonpea cultivars in comparison to 63.33% polymorphic bands between R. bracteata and pigeonpea cultivars, and 13.28% polymorphic bands among pigeonpea cultivars. The cluster analysis revealed low polymorphism among pigeonpea cultivars and very high polymorphism between cultivated pigeonpea and its wild relatives. The AFLP analysis also indicated that only one primer combination (EcoRI + ACT and MseI + CTG), at the most any four primer pair combinations, are sufficient for obtaining reliable estimation of genetic diversity in closely related cultivars like pigeonpea material analyzed herein. AFLP analysis may prove to be a useful tool for molecular characterization of pigeonpea cultivars and its wild relatives and for possible use in genome mapping.  相似文献   
122.
根据大豆Actin基因的保守序列设计一对引物Primer 1和Pri mer 2,以木豆叶片总RNA为模板,采用RT-PCR的方法扩增出Actin基因片段并克隆到PMD-18T载体。阳性克隆经PCR检测后测序,序列分析结果表明,该片段长302bp,编码100个氨基酸;所得序列与GenBank中注册的其他植物Actin基因核苷酸序列的同源性均在89%以上,其中与大豆的同源性达94%;与氨基酸序列的同源性均在90%以上。  相似文献   
123.
Root nodulating Sinorhizobium fredii KCC5 and Pseudomonas fluorescens LPK2 were isolated from nodules of Cajanus cajan and disease suppressive soil of tomato rhizosphere, respectively. Both strains produced IAA, siderophore, solubilized insoluble phosphate, showed chitinase and β-1,3-glucanase activities, and strongly inhibited the growth of Fusarium udum. It also caused degradation and digestion of cell wall components, resulting in hyphal perforations, empty cell (halo) formation, shrinking and lysis of fungal mycelia along with significant degeneration of conidia. LPK2 produced volatile cyanogen (HCN). Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers showed a significant increase in seed germination (94%) while seed germination with co-inoculated strains (KCC5 + LPK2), KCC5 and LPK2 alone was 90, 84 and 82% respectively as compared to control 77%. After 120 days of sowing, per plant number of pods, nodules, shoot length, root length, shoot weight and root weight were greater for the combination with half dose of chemical fertilizers compared to the control. Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers resulted in an 82% increase in grain yield per hectare compared to the control. Both strains KCC5 and LPK2 led to proto-cooperation as evidenced by synergism, aggressive colonization of the roots, and enhanced growth, suggesting potential biocontrol efficacy against Fusarium wilt in C. cajan.  相似文献   
124.
Nine short-duration pigeonpea genotypes were given adequate soil moisture throughout growth or subjected to water stress during the late vegetative and flowering (stress 1), flowering and early pod development (stress 2), or podfill (stress 3) growth stages under field conditions. The stress 1 treatment had no significant effect on the time to flowering. No stress treatment affected maturity or inter-plant flowering synchronization. The interval from a newly opened flower to a mature pod was about 30 days for all genotypes, and was unchanged in plants that were recovenng from stress 1 or undergoing stress 2. Seed yield was reduced to the greatest extent by stress 2 (by 37 %) and not significantly affected by stress 3 for all genotypes. No consistent differences were found between determinate and indeterminate genotypes in the ability to maintain seed yield under both stress 1 and stress 2. The harvest index was significantly reduced (22 %) by stress 2 but not by stress 1. However, under each soil moisture treatment, genotypic differences for seed yield were associated largely with differences in total dry matter production (TDM). For all genotypes, the number of pods m-2 was the only yield component significantly affected by the water stress treatments. The stability of other yield components should be fully exploited to improve the stability of seed yield under drought conditions (drought resistance). Possible characteristics which may improve the drought resistance of short-duration pigeonpea include the ability to maintain TDM, low flowering synchronization, small pod size with few seeds pod-1, and large 100-seed mass.  相似文献   
125.
To develop a preliminary screening procedure for waterlogging resistance, a waterlogging resistant ICP 8379 and a waterlogging susceptible cultivar ICP 7035 were grown i n pots using different growth media and subjected to 6 days of waterlogging. Waterlogging caused a significant reduction in root dry mass of both cultivars which was greater in ICP 7035 than tn ICP 8379, The reduction i n shoot dry mass was comparatively small. The most conspicuous differences between the two cultivars occurred in terms of plant survival. In different soil treatments, ICP S379 showed 0–38 % mortality and ICP 7035 showed 63–100% mortality. The variation in mortality occurred in response to differences in growth medium. Using the growth medium that gave maximum differences, eight additional cultivars were compared along with ICP 7035 and JCP 8379. Significant differences m plant mortality among different cultivars were observed, A number of cultivars showed similar low mortality as ICP 8379, Therefore, there appears to be a potential t o use this method for preliminary screening of a large number of pigeonpea cultivars for waterlogging resistance.  相似文献   
126.
Summary Inheritance studies on the stem termination in pigeon pea using F1, F2 and F3 generations of two crosses between determinate and indeterminate lines suggested that two dominant genes with epistatic (inhibitory) interaction of one of them control the interminate growth habit. The gene symbols D. idid and ddIdId have been designated to the parental plants with determinate and indeterminate growth habits, respectively. The gene IdId was epistatic (inhibitory) to the gene D giving a ratio of 13 indeterminate: 3 determinate inthe F2's observed. F3 segregation supported the proposed model on the mode of inheritance.  相似文献   
127.
Summary Natural out-crossing rate in pigeonpea was studied at ICRISAT Center using plant stature (tall plants in dwarf progenies) as the genetic marker. The data indicated natural out-crossing rates of 9.7% to 24.1% with a pooled value of 13.1% in the six populations studied. These data were comparable to earlier studies at the same site using stem colour and growth habit as genetic markers in tall pigeonpea cultivars thus suggesting that foraging of insect pollination vectors is not influenced by plant type. The implications of natural out-crossing on breeding and maintenance of genetic purity of cultivars is discussed.  相似文献   
128.
Summary Atylosia scarabaeoides (L.) Benth., a wild relative of pigeonpea, possesses several useful genes which can be utilized for pigeonpea improvement. In the present study, 33 accessions of A. scarabaeoides were evaluated at ICRISAT Center during the 1987 rainy season for variation in some useful traits to identify parents for inter-generic hybridization. A large variation was observed for leaf components, seed size, pod length, seeds/pod, days to flowering, seed protein, sulphur amino acids, resistance to cyst nematode, phytophthora blight, sterility mosaic, fusarium wilt, pod borer, pod fly, and pod wasp. Only four accessions were found to have more than 28% protein content. Methionine and cystine contents were marginally higher than in pigeonpea but the variation was not large enough to utilize them in the breeding program. In A. scarabaeoides. accessions resistant to fusarium wilt, phytophthora blight, sterility mosaic, and cyst nematode were detected. Compared to pigeonpea, the A. scarabaeoides accessions were less susceptible to lepidopteran borer and were immune to pod fly damage. Accessions ICPW 89 and ICPW 111 in short- (100–120 days), and ICPW 94 and ICPW 118 in medium-duration (140–180 days) were identified as potential parents for use in inter-generic hybridization.ICRISAT Journal Article No. 967  相似文献   
129.
Summary The wrapped flower character has been reported to inhibit out-crossing in pigeonpea in Australia. However, one of the wrapped flower lines gave an average of about 16% out-crossing at ICRISAT Center near Hyderabad, India. This level of out-crossing was not different from that in cultivars having normal (unwrapped) flowers. This suggests that the wrapped flower trait is not a dependable character for reducing out-crossing in pigeonpea.ICRISAT Journal Article No. 578.  相似文献   
130.
Summary Atylosia scarabaeoides Benth. and A. platycarpa Benth., close relatives of the species Cajanus cajan (L.) Millsp., were screened for photoperiodic response. Four photoperiods ranging from 12 h 45 min to 19 h were studied in three environments. A. scarabaeoides flowered freely only in the first photoperiod. A. platycarpa not only flowered early (39 to 63 days after planting) in all four photoperiods, but also exhibited a relatively constant vegetative phase up to 16 h of illumination. Cajanus cajan, in which most cultivars-if not all-exhibit a response to photoperiod, was successfully hybridized with the two Atylosia species. It is suggested that genes for earliness and insensitivity to day-length could be transferred from A. platycarpa to C. cajan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号